

Rochelle Park School District

Curriculum Guide

Science Grade 8

BOE Approved on August 30, 2022

Unit 1: Overview

Unit 1: Interactions of Matter

Grade: 8

Content Area: Physical Science

Pacing: 20 Instructional Days

Essential Question

How can we trace synthetic materials back to natural ingredients?

Student Learning Objectives (Performance Expectations)

MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Unit Summary

Students build understandings of what occurs at the atomic and molecular scale. Students apply their understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They also provide molecular level accounts to explain states of matter and changes between states. The crosscutting concepts of cause and effect, scale, proportion and quantity, structure and function, interdependence of science, engineering, and technology, and the influence of science, engineering and technology on society and the natural world provide a framework for understanding the disciplinary core ideas. Students demonstrate grade appropriate proficiency in developing and using models, and obtaining, evaluating, and communicating information. Students are also expected to use the scientific and engineering practices to demonstrate understanding of the core ideas.

Technical Terms

Molecular level, thermal energy, radiation, conduction, thermal conductor, thermal insulator, specific heat, thermal contraction, thermal expansion

Formative Assessment Measures

Part A: How can you tell what the molecules are doing in a substance?

Students who understand the concepts are able to:

Develop a model that predicts and describes changes in particle motion that could include molecules or inert atoms or pure substances.

Use cause-and-effect relationships to predict changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed in natural or designed systems.

Part B: How can we trace synthetic materials back to natural ingredients?

Students who understand the concepts are able to:

Obtain, evaluate, and commu	nicate information to show that	synthetic materials come from natural resources and affect society.
		materials formed from natural resources affect society.
Assess the credibility, accuracy	y, and possible bias of each publ	ication and methods used within the publication.
Describe how information abo	out how synthetic materials form	ned from natural resources affect society is supported or not supported by evidence.
		Interdisciplinary Connections
NJSL	S- ELA	NJSLS- Mathematics
Cite specific textual evidence	to support analysis of science	Understand that positive and negative numbers are used together to describe quantities
and technical texts, attending	to the precise details of	having opposite directions or values (e.g., temperature above/below zero, elevation
explanations or descriptions. (MS-PS1-3)RST.6-8.1	above/below sea level, credits/debits, positive/negative electric charge); use positive and
Integrate quantitative or techn	nical information expressed in	negative numbers to represent quantities in real-world contexts, explaining the meaning of 0
words in a text with a version	of that information expressed	in each situation. (MS-PS1-4) 6.NS.C.5
visually (e.g., in a flowchart, d	iagram, model, graph, or table).	
(MS-PS1-4)RST.6-8.7		
Gather relevant information from multiple print and digital		
sources, using search terms effectively; assess the credibility		
and accuracy of each source; and quote or paraphrase the		
data and conclusions of others	s while avoiding plagiarism and	
following a standard format fo	or citation. (MS-PS1-3)	
WHST.6-8.8		
Core Instructional Materials	Lab-Aids, Lab Materials, house Magazine, Blooket.	hold chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod, Scholastic
Career Readiness, Life Literacies and Key Skills	generational), and determine h 7.1.NH.IPERS.6, 8.2.8.ETW.4). 9.4.8.CI.2: Repurpose an existin 9.4.8.CI.3: Examine challenges	d on varying perspectives on causes of climate change (e.g., crosscultural, gender-specific, now the data can best be used to design multiple potential solutions (e.g., RI.7.9, 6.SP.B.5, ng resource in an innovative way (e.g., 8.2.8.NT.3). that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2). creativity and innovation in career pathways and industries.

	9.4.8.CT.1: Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or globa
	problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective (e.g.,
	MS-ETS1-2).
	9.4.8.CT.2: Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most
	plausible option (e.g., MS-ETS1-4, 6.1.8.CivicsDP.1).
	9.4.8.CT.3: Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a
	positive or negative outcome.
	9.4.8.DC.1: Analyze the resource citations in online materials for proper use.
	9.4.8.DC.2: Provide appropriate citation and attribution elements when creating media products (e.g., W.6.8).
	9.4.8.DC.8: Explain how communities use data and technology to develop measures to respond to effects of climate change
	(e.g., smart cities).
	9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal.
	9.4.8.IML.1: Critically curate multiple resources to assess the credibility of sources when searching for information.
	9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations.
	9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data.
	9.4.8.IML.7: Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose (e.g.,
	1.2.8.C2a, 1.4.8.CR2a, 2.1.8.CHSS/IV.8.AI.1, W.5.8, 6.1.8.GeoSV.3.a, 6.1.8.CivicsDP.4.b, 7.1.NH. IPRET.8).
	9.4.8.IML.8: Apply deliberate and thoughtful search strategies to access high-quality information on climate change (e.g.,
	1.1.8.C1b)
	9.4.8.IML.12: Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic
	audience.
	9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data-based
	decision-making
	9.4.8.TL.2: Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4,
	6.1.8.EconET.1, 6.1.8.CivicsPR.4).
	9.4.8.TL.3: Select appropriate tools to organize and present information digitally.
	9.4.8.TL.4: Synthesize and publish information about a local or global issue or event (e.g., MSLS4-5, 6.1.8.CivicsPI.3).
	9.4.8.TL.6: Collaborate to develop and publish work that provides perspectives on a real-world problem.
Computer Science and De	esign 8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.

Thinking	8.1.8.DA.6: Analyze climate cha	ange computational models and	d propose refinements.			
	8.2.8.ED.2: Identify the steps in the design process that could be used to solve a problem.					
	8.2.8.ED.3: Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype,					
	graphical/technical sketch).		(
	8.2.8.ED.4: Investigate a malfur	nctioning system, identify its im	ppact, and explain the step-by-s	tep process used to		
	troubleshoot, evaluate, and tes					
	8.2.8.ED.5: Explain the need for					
	8.2.8.ED.6: Analyze how trade-					
	8.2.8.ED.7: Design a product to	, ,	•	ign process including		
	decisions made as a result of sp	•		ign process, including		
	8.2.8.ITH.2: Compare how tech					
	8.2.8.ITH.4: Identify technologi	•	•	cos of other technologies and		
	explain the change in impact.	es that have been designed to	reduce the negative consequen	ices of other technologies and		
		ets of a siven technology on dif	forest conjetion poting factors	that may make a tashnalagy		
	 8.2.8.ITH.5: Compare the impacts of a given technology on different societies, noting factors that may make a technology appropriate and sustainable in one society but not in another. 8.2.8.NT.4: Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product. 8.2.8.ETW.2: Analyze the impact of modifying resources in a product or system (e.g., materials, energy, information, time, tools, people, capital). 8.2.8.ETW.3: Analyze the design of a product that negatively impacts the environment or society and develop possible 					
	solutions to lessen its impact.					
	8.2.8.ETW.4: Compare the environmental effects of two alternative technologies devised to address climate change issues					
	and use data to justify which choice is best.					
Fueliek Levenser Leens	Created Education	Modifications		504		
English Language Learners	Special Education Word walls	At-Risk	Gifted and Talented	504 Word walls		
Scaffolding Word walls		Teacher tutoring Peer tutoring	Curriculum compacting Challenge assignments	Visual aides		
Sentence/paragraph frames		Study guides		Graphic organizers		
Bilingual		Graphic organizers		Multimedia		
dictionaries/translation		Extended time	Independent research/inquiry	Leveled readers		
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	Assistive technology		

Read alouds	Notes/summaries	Modified assignments	Higher level questioning	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking	Extended time
Annotation guides	Answer masking		tasks	Answer masking
Think-pair- share	Answer eliminator		Self-directed activities	Answer eliminator
Visual aides	Highlighter			Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

MS. Matter and Its Interactions

MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.

Assessment Boundary: Assessment is limited to qualitative information.

Evidence Statements: MS-PS1-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Obtaining, Evaluating, and	PS1.A: Structure and Properties of	Structure and Function
Communicating Information	<u>Matter</u>	Structures can be designed to serve particular functions by taking into account
Obtaining, evaluating, and	Each pure substance has characteristic	properties of different materials, and how materials can be shaped and used.
communicating information in	physical and chemical properties (for	Connections to Engineering, Technology, and Applications of Science
<u>6–8 builds on K–5 and</u>	any bulk quantity under given	Interdependence of Science, Engineering, and Technology
progresses to evaluating the	<u>conditions) that can be used to</u>	Engineering advances have led to important discoveries in virtually every field of
<u>merit and validity of ideas and</u>	identify it. science, and scientific discoveries have led to the development of entire	
<u>methods.</u>	PS1.B: Chemical Reactions	and engineered systems.
Gather, read, and synthesize	<u>Substances react chemically in</u>	Influence of Science, Engineering and Technology on Society and the Natural
information from multiple	<u>characteristic ways. In a chemical</u>	<u>World</u>
appropriate sources and assess	process, the atoms that make up the	The uses of technologies and any limitation on their use are driven by individual
<u>the credibility, accuracy, and</u>	original substances are regrouped into	or societal needs, desires, and values; by the findings of scientific research; and by
possible bias of each publication	different molecules, and these new	

		substances have different properties	differences in such factors as climate, natural resources, and economic conditions.		
how they are suppor	ted or not	from those of the reactants.	Thus technology use varies from region to region and over time.		
supported by eviden	<u>ce.</u>				
Connections to othe	r DCIs in this	grade-band: MS.LS2.A ; MS.LS4.D ; N	MS.ESS3.A ; MS.ESS3.C		
Articulation of DCIs	across grade	-bands: HS.PS1.A ; HS.LS2.A ; HS.LS4.	D ; HS.ESS3.A		
NJSLS- ELA: RST.6-8.	1, WHST.6-8.	8			
NJSLS- Math: N/A					
			5E Model		
MS-PS1-3. Gather ar	nd make sens	se of information to describe that syr	thetic materials come from natural resources and impact society.		
	Poster paper	will be placed around the room. Each	n poster will have a natural resource as a title Trees, Oil, Soil, Natural Gas. Students		
Engago	will take pos	t-its which includes common material	s we use from Earth and place them under the natural resource posted associated		
Engage	with that the production of that material.				
Anticipatory Set	Use the follo	wing graph: Common Materials We U	lse from Earth		
	https://www	.ck12.org/earth-science/Materials-Hu	umans-Use/lesson/Materials-Humans-Use/?referrer=concept_details		
Exploration	Clothing Mat	tters			
Student Inquiry	http://www.mineralseducationcoalition.org/pdfs/study/studyoftheearth.pdf				
Student inquiry	https://www.ck12.org/earth-science/Materials-Humans-Use/				
	In these less	ons:			
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.				
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.				
Explanation	Topics to Be	Discussed in Teacher Directed Lessons	s (Disciplinary Core Ideas):		
Concepts and	PS1.A: Structure and Properties of Matter				
Practices	Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be				
FIACUCES	used to identify it. (MS-PS1-3)				
	PS1.B: Chemical Reactions				
	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are				
	regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3)				
Elaboration	Have students complete additional activities from the following unit: A Study of the Earth's- Natural Resources				
Extension Activity	<u>http://www.</u>	mineralseducationcoalition.org/pdfs/	study/studyoftheearth.pdf		

	Assessment Task A
	Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of
	each publication and methods used, and describe how they are supported or not supported by evidence.
	Students will synthesize the information learned in the lab. Use the following questions to guide the student's written response.
	Which materials are man-made and which are natural? Analyze the "content" and "care" information. Determine the characteristics
	of different clothing materials. Why can some be washed in hot water, others only in cold? Why can't some be put in a clothes dryer
	or ironed? What about bleach?
	What properties of Iber make it attractive for clothing use?
Evaluation	Analyze the "content" and "care" information. Determine the characteristics of different clothing materials. Why can some be
Assessment Tasks	washed in hot water, others only in cold? Why can't some be put in a clothes dryer or ironed? What about bleach?
	What effect, if any, does the availability of natural resources have on your life-style? Has the need for resources ever caused war?
	What causes famine in some countries? Is it lack of food or politics?
	Has the need for resources ever caused war?
	What causes famine in some countries? Is it lack of food or politics?
	Can a country maintain its independence and quality of life without a dependable supply of natural resources? If yes, for how long? If
	no, what can that country do to continue its existence?
	Is there anything that isn't made from a natural resource? Have groups of students challenge one another to research something that
	doesn't come from natural resources.

MS. Matter and Its Interactions

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.

Assessment Boundary: N/A

Evidence Statements: MS-PS1-4

Science & Engineering	Disciplinary Core Ideas	Cross-Cutting Concepts
Practices		
Developing and Using	PS1.A: Structure and Properties of Matter	Cause and Effect
<u>Models</u>	Gases and liquids are made of molecules or inert atoms that are	Cause and effect relationships may be used to predict
Modeling in 6–8 builds	moving about relative to each other.	phenomena in natural or designed systems.
on K–5 and progresses	In a liquid, the molecules are constantly in contact with others; in a	
to developing, using and	gas, they are widely spaced except when they happen to collide. In a	
revising models to	solid, atoms are closely spaced and may vibrate in position but do not	
<u>describe, test, and</u>	change relative locations.	
predict more abstract	The changes of state that occur with variations in temperature or	
phenomena and design	pressure can be described and predicted using these models of	
<u>systems.</u>	matter.	
Develop a model to	PS3.A: Definitions of Energy	
predict and/or describe	The term "heat" as used in everyday language refers both to thermal	
phenomena.	energy (the motion of atoms or molecules within a substance) and the	
	transfer of that thermal energy from one object to another. In science,	
	heat is used only for this second meaning; it refers to the energy	
	transferred due to the temperature difference between two objects.	
(secondary)		
	The temperature of a system is proportional to the average internal	
	kinetic energy and potential energy per atom or molecule (whichever	
	is the appropriate building block for the system's material). The details	
	of that relationship depend on the type of atom or molecule and the	
	interactions among the atoms in the material. Temperature is not a	
	direct measure of a system's total thermal energy. The total thermal	
	energy (sometimes called the total internal energy) of a system	
	depends jointly on the temperature, the total number of atoms in the	
	system, and the state of the material. (secondary)	
Connections to other DC	Is in this grade-band: MS.ESS2.C	
Articulation of DCIs acro	ss grade-bands: HS.PS1.A ; HS.PS1.B ; HS.PS3.A	

NJSLS- ELA: RST.6	-8.7		
NJSLS- Math: 6.N	S.C.5		
	5E Model		
MS-PS1-4. Develo	p a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy		
is added or remov	ved.		
Engago	Introduction Video: States of Matter		
Engage Anticipatory Set	http://betterlesson.com/lesson/639789/states-of-matter?from=search_lesson_title		
	https://www.youtube.com/watch?v=HAPc6JH85pM		
	Crack that Marble Lab		
Exploration	http://betterlesson.com/lesson/634011/crack-that-marble-properties-of-matter-labs		
Student Inquiry			
, , ,	Molecules in Motion (download the Lesson 1.2 PDF to access the lesson plan)		
	http://www.middleschoolchemistry.com/lessonplans/chapter1/lesson2		
	In these lessons:		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS1.A: Structure and Properties of Matter		
	Gases and liquids are made of molecules or inert atoms that are moving about relative to each other.		
-	In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide.		
Explanation	In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations.		
Concepts and Practices	The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter		
Practices	matter. PS3.A: Definitions of Energy		
	The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance)		
	and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to		
	the energy transferred due to the temperature difference between two objects. (secondary)		
	The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule		
	(whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or		
	molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal		

	energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the
	total number of atoms in the system, and the state of the material. (secondary)
	Determine the melting and freezing points of a substance. Analyze a phase change curve.
	Students will observe what happens as matter undergoes a phase change. Start with cetyl alcohol in the solid phase well below its
Flah a wati a w	melting point. Make observations as heat is added. Keep recording the temperature until the substance is totally melted. Reverse the
Elaboration	process and let the same sample cool. (it will cool just sitting out at room temperature with the heat removed.)
Extension Activity	Explain the relationship between temperature and the energy associated with the motion of atoms. Write a hypothesis of what a
	graph of the temperature changes will look like. Students will graph the results of the temperature changes. A representative from
	each group will describe each part of the graph using their own words.
	Assessment Task A: Draw a Model Activity Sheet
Evaluation	Develop a model to predict and/or describe phenomena.
Assessment Tasks	Students will follow the steps outlined on the Student Activity Sheet. Students should be assessed based upon accuracy of model
	drawn and analysis of activity using a written response to the guiding questions.

Unit 2: Overview

Unit 2: Types of Interactions

Grade: 8

Content Area: Physical Science

Pacing: 25 Instructional Days

Essential Question

Is it possible to exert on an object without touching it?

Student Learning Objectives (Performance Expectations)

MS-PS2-3. Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Unit Summary

Students use cause and effect; system and system models; and stability and change to understand ideas that explain why some materials are attracted to each other while others are not. Students apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while others repel. In particular, students develop understandings that gravitational interactions are always attractive but that electrical and magnetic forces can be both attractive and negative. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields. Students are expected to consider the influence of science, engineering, and technology on society and the natural world. Students are expected to demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, and engaging in argument. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Gravitational forces, electrical forces, magnetic forces, attract, repel, attractive, negative, air resistance, centripetal acceleration, centripetal force, joule, kinetic energy, mechanical energy, electrical conductors, electrical insulators, semiconductors, superconductors, induction, polarization

Formative Assessment Measures

Part A: Can you apply a force on something without touching it?

Students who understand the concepts are able to:

Students will conduct an investigation and evaluate an experimental design to produce data that can serve as the basis for evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Students will identify the cause-and-effect relationships between fields that exist between objects and the behavior of the objects.

Part B: How does a Maglev train work?

Students who understand the concepts are able to:

Students will ask questions about data to determine the effect of the strength of electric and magnetic forces that can be investigated within the scope

of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

Students will perform investigations using devices that use electromagnetic forces.

Students will collect and analyze data that could include the effect of the number of turns of wire on the strength of an electromagnet or the effect of increasing the number or strength of magnets on the speed of an electric motor.

Part C: If I were able to eliminate air resistance and dropped a feather and a hammer at the same time, which would land first?

Students who understand the concepts are able to:

Students construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Students use models to represent the gravitational interactions between two masses.

Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Conduct short as well as more sustained research projects to	Use units as a way to understand problems and to guide the solution of multi-step		
answer a question (including a self-generated question) or	problems; choose and interpret units consistently in formulas; choose and interpret the		
solve a problem; narrow or broaden the inquiry when	scale and the origin in graphs and data displays. (HS-PS2-5),(HS-PS2-4) HSN.Q.A.1		
appropriate; synthesize multiple sources on the subject,	Define appropriate quantities for the purpose of descriptive modeling.		
demonstrating understanding of the subject under	(HS-PS2-5),(HS-PS2-4) HSN.Q.A.2		
investigation.(HS-PS2-5), (HS-PS2-3) WHST.11-12.7	Choose a level of accuracy appropriate to limitations on measurement when reporting		
Gather relevant information from multiple authoritative	quantities. (HS-PS2-5),(HS-PS2-4) HSN.Q.A.3		
print and digital sources, using advanced searches	Reason abstractly and quantitatively. (HS-PS2-4) MP.2		
effectively; assess the strengths and limitations of each	Model with mathematics. (HS-PS2-4) MP.4		
source in terms of the specific task, purpose, and audience;	Interpret expressions that represent a quantity in terms of its context. (HS-PS2-4)		
integrate information into the text selectively to maintain	HSA.SSE.A.1		

ne flow of ideas, avoiding plagiarism and overreliance on Choose and produce an equivalent form of an expression to reveal and explain properties				
iny one source and following a standard format for citation. of the quantity represented by the expression. (HS-PS2-4) HSA.SSE.B.3				
(HS-PS2-5) WHST.11-12.8				
Draw evidence from informati	onal texts to support analysis,			
reflection, and research. (HS-P	2S2-5) WHST.11-12.9			
Core Instructional Materials	Lab-Aids, Lab Materials, house Scholastic Magazine, Blooket.	ehold chemicals and materials,	string, craft sticks, hot glue and	d glue guns, Nearpod,
		ng resource in an innovative w	vav (e.g. 828 NT3)	
Career Readiness, Life		0	credibility of sources when sea	arching for information
Literacies and Key Skills		-	communicate a real-world pro	-
	6.1.8.EconET.1, 6.1.8.CivicsPR.			
		n the design process that could	d be used to solve a problem.	
Computer Science and Design			putational tools to make it usal	ble for a specific purpose.
Thinking	-	-	product or system (e.g., materi	
	tools, people, capital).		, , , , , , , , , , , , , , , , , , , ,	
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	504
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	Word walls
Word walls	Visual aides	Peer tutoring	Challenge assignments	Visual aides
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	Graphic organizers
Bilingual	Multimedia	Graphic organizers	Tiered activities	Multimedia
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	Leveled readers
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	Assistive technology
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking	Extended time
Annotation guides	Answer masking		tasks	Answer masking
Think-pair- share	Answer eliminator		Self-directed activities	Answer eliminator
Visual aides	Highlighter			Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

	PHYSICAL SCI	ENCE
MS. Motion and Stability: Forces and Inte		
MS-PS2-3. Ask questions about data to de		
	-	es could include electromagnets, electric motors, or generators.
		trength of an electromagnet, or the effect of increasing the number or
strength of magnets on the speed of an ele		
	questions that require quantitative an	swers is limited to proportional reasoning and algebraic thinking.
Evidence Statements: MS-PS2-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems		Cause and Effect
Asking questions and defining problems in		Cause and effect relationships may be used to predict phenomena in
	<u>(electromagnetic) forces can be</u>	natural or designed systems.
	attractive or repulsive, and their sizes	
	depend on the magnitudes of the	
clarifying arguments and models.	charges, currents, or magnetic	
· · · ·	strengths involved and on the	
	distances between the interacting	
	<u>objects.</u>	
other public facilities with available		
resources and, when appropriate, frame a		
hypothesis based on observations and		
scientific principles.		
Connections to other DCIs in this grade-ba	and: N/A	
Articulation of DCIs across grade-bands: 3	.PS2.B ; HS.PS2.B	
NJSLS- ELA: RST.6-8.1		
NJSLS- Math: MP.2		
	5E MODE	
MS-PS2-3. Ask questions about data to de	termine the factors that affect the str	ength of electric and magnetic forces.
	ips to explain magnetism, magnetic for	ces, electric currents, and motors.
Engage	_	

Anticipatory Set	Magnetism
	http://www.neok12.com/video/Magnetism/zX4752067171765e67545d45.htm
	Try the experiment to view the magnetic field lines seen on the video. You will need white paper, iron filings, and several different
	magnets for each group. Make sure to record your findings and to draw pictures of what you observe in your science notebooks! View
	the How does electricity create a magnet video clip (4:57 minutes)
	http://www.neok12.com/video/Magnetism/zX57555a4f5f0b606e625063.htm
	Try to create your own electromagnet as described in the video. You will need 20-30 staples, a piece of paper, a length of fine copper
	wire, and several batteries for each group. Make sure to record your data and findings and to draw pictures of what you observe in
	your science notebooks! So, How do motors work? The transformation of electrical energy to mechanical energy is best seen in a
	short video such as NeoK12's 2:20 minute video about How to build a simple motor, and how it works:
	http://www.neok12.com/php/watch.php?v=zX5b4c696f007c5c7d525a6b&t=How-It-Works
	Put the Charge in the Goal
	To Explore electric fields and electric charges, students will utilize the following interactive. This interactive challenges students to put
	the electron into the goal using positive and negative charges.
	http://www.physicsclassroom.com/Physics-Interactives/Static-Electricity/Put-the-Charge-in-the-Goal
Fundamention	<u>Electromagnets</u>
Exploration Student Inquiry	In this activity, students will make an electromagnet and evaluate how the strength of the electromagnet can be changed.
Student inquiry	http://betterlesson.com/lesson/637179/electromagnets
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Practices	PS2.B: Types of Interactions
	Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the
	charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
Elaboration	
Extension	Related Activities: MS-PS2-3
Activity	http://www.ck12.org/ngss/middle-school-physical-sciences/motion-and-stability:-forces-and-interactions

	Assessment Task A: Electromagnets, Students in Action (activity guide and summary).		
Evaluation	Students should be assessed based upon the quality of their questions and ability for frame a hypothesis based on observations and		
Assessment	scientific principles.		
Tasks	Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public		
	facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.		

MS. Motion and Stability: Forces and Interactions

MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.

Assessment Boundary: Assessment does not include Newton's Law of Gravitation and Kepler's Laws.

Evidence Statements: MS-PS2-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	PS2.B: Types of Interactions	Systems and System Models
Engaging in argument from evidence in 6–8	<u>Gravitational forces are always</u>	Models can be used to represent systems and their
builds from K–5 experiences and progresses	attractive. There is a gravitational force	interactions—such as inputs, processes and outputs—and energy
to constructing a convincing argument that	<u>between any two masses, but it is very</u>	and matter flows within systems.
supports or refutes claims for either	<u>small except when one or both of the</u>	
explanations or solutions about the natural	<u>objects have large mass—e.g., Earth</u>	
and designed world.	and the sun.	
Construct and present oral and written		
arguments supported by empirical evidence		
and scientific reasoning to support or refute		
an explanation or a model for a		
phenomenon or a solution to a problem.		
Connections to Nature of Science		

Scientific Knowledg	e is Based on Empirical			
Evidence				
Science knowledge	ence knowledge is based upon logical			
and conceptual con	nections between			
evidence and explai	nations.			
Connections to oth	er DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C			
Articulation of DCIs	across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B			
NJSLS- ELA: WHST.6	-8.1			
NJSLS- Math: N/A				
	5E MODEL			
MS-PS2-4. Construc	t and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the			
masses of interaction	ig objects.			
Engage Anticipatory Set	Ask students "How would life be different without gravity?" Students should record their thoughts first in their notebooks. Class should then hold a discussion sharing ideas in how they lives would be different and what adjustments they would need to be make. All ideas should be recorded on a large piece of posterboard/paper			
	Super Planet Crash http://www.stefanom.org/spc/ To beat Planet Crash, students must create a planetary system that can survive for 500 years. Students will play 5 rounds. Student should observe that the closer the object is to the Sun the quicker the object moves and the larger the mass the more interference happens on the rest of the solar system. (Hint: Have your students at least in one of their rounds add the very massive Dwarf star	ce		
Exploration Gravity and Orbits Lab Student Inquiry https://phet.colorado.edu/en/simulation/gravity-and-orbits The two labs investigate how the force of gravity depends on mass as well as that the planets would continually move in a line due to inertia if the Sun suddenly disappeared. The labs also illustrate that the farther away the two planets are the lo (more time it takes to revolve around the Sun"				
	How Much Do I Weight on Different Planets? http://www.exploratorium.edu/ronh/weight/			

	Have students calculate their weight on different planets. Once students have calculated their weight ask students to answer, "If
	your weight is different on different planets, do
	es your mass differ on those same planets?"
	Gravity Exploration
	http://sciencespot.net/Media/gravlab.pdf
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Practices	PS2.B: Types of Interactions
	Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when
	one or both of the objects have large mass—e.g., Earth and the sun.
Elaboration	The Great Gravity Escape
Extension Activity	https://www.teachengineering.org/view_activity.php?url=collection/cub_/activities/cub_mars/cub_mars_lesson04_activity1.xml
	Assessment Task A
	Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an
Evaluation	explanation or a model for a phenomenon or a solution to a problem.
	Based upon the various exploration activities, students will construct and present an oral and written argument supported by
Assessment Tasks	evidence and scientific reasoning. Distribute the quick guide to a well developed paragraph document to help students craft their
	written argument.
	https://docs.google.com/document/d/1QKaULOTkKr4z0F6PHvTR41E44noNdP2NupnibESg2ss/pub

PHYSICAL SCIENCE		
MS. Motion and Stability: Forces and Interactions		
MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on		
each other even though the objects are not in contact.		
Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and		
electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations.		

Evidence Stateme	nts: MS-PS2-5				
	gineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Planning and Carr	ying Out Investigations	PS2.B: Types of Interactions	Cause and Effect		
Planning and carry	ving out investigations	Forces that act at a distance (electric,	Cause and effect relationships may be used to predict phenomena		
o answer questio	ns or test solutions to	magnetic, and gravitational) can be	in natural or designed systems.		
roblems in 6–8 b	<u>uilds on K–5</u>	explained by fields that extend through			
xperiences and p	rogresses to include	space and can be mapped by their effect			
nvestigations that	use multiple variables	<u>on a test object (a charged object, or a</u>			
nd provide evide	<u>nce to support</u>	<u>ball, respectively).</u>			
xplanations or de	esign solutions.				
Conduct an invest	igation and evaluate				
he experimental of	design to produce data				
<u>o serve as the bas</u>	sis for evidence that can				
neet the goals of	the investigation.				
Connections to ot	her DCIs in this grade-b	and: N/A			
Articulation of DC	Is across grade-bands:	3.PS2.B ; HS.PS2.B ; HS.PS3.A ; HS.PS3.B ;	HS.PS3.C		
IJSLS- ELA: RST.6-	8.3, WHST.6-8.7				
IJSLS- Math: N/A					
		5E MODEL			
/IS-PS2-5. Conduc	ct an investigation and o	evaluate the experimental design to prov	ide evidence that fields exist between objects exerting forces on		
ach other even t	hough the objects are n	<u>iot in contact.</u>			
ngage	Force: Definitions and	Types- Video and Quiz			
Anticipatory Set	http://study.com/acad	http://study.com/academy/lesson/force-definition-and-types.html			
	Measurement: Forces				
xploration	In this lesson, students. will explore the idea that forces happen every time objects interact and will learn how these invisible				
tudent Inquiry	pushed and pulls can	be measured.			
-	http://betterlesson.co	om/lesson/637564/measurement-forces			
Explanation					

Concepts and	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Practices	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS2.B: Types of Interactions		
	Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be		
	mapped by their effect on a test object (a charged object, or a ball, respectively).		
Elaboration	Measurement: Mass Relearn Activity		
Extension Activity			
	Assessment Task A: Measurement Force Exploration Worksheet		
	Conduct an investigation and evaluate the experimental design to produce data to serve as the basis for evidence that can meet the		
Evaluation	goals of the investigation.		
Assessment Tasks	Measurement Force Exploration		
	As students collect data, make sure the data provides evidence that fields exist between objects exerting forces on each other even		
	though the objects are not in contact		

•

Unit 3: Overview

Unit 3: Structure and Properties of Matter

Grade: 8

Content Area: Physical Science

Pacing: 20 Instructional Days

Essential Question

How is it that everything is made of stardust?

Student Learning Objectives (Performance Expectations)

MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures.

MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Unit Summary

Students build understandings of what occurs at the atomic and molecular scale. Students apply their understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They also provide a molecular level accounts to explain states of matter and changes between states. The crosscutting concepts of cause and effect, scale, proportion and quantity, structure and function, interdependence of science, engineering, and technology, and the influence of science, engineering and technology on society and the natural world provide a framework for understanding the disciplinary core ideas. Students demonstrate grade appropriate proficiency in developing and using models, and obtaining, evaluating, and communicating information. Students are also expected to use the scientific and engineering practices to demonstrate understanding of the core ideas.

Technical Terms

Electron Cloud model, atoms, molecule, subatomic, nucleus, proton, neutron, electron, particle, electron cloud, isotopes, transmutation, alpha particle, beta particle, atomic scale, molecular scale

Formative Assessment Measures

Part A: If the universe is not made of Legos[®], then what is it made of?

Students who understand the concepts are able to:

Develop a model of a simple molecule.

Use the model of the simple molecule to describe its atomic composition.

Develop a model of an extended structure.

Use the model of the extended structure to describe its repeating subunits.

[Boundary: The substructure of atoms and the periodic table are learned in high school chemistry.]

Part B: Is it possible to tell if two substances mixed or if they reacted with each other?

Students who understand the concepts are able to:

Analyze and interpret data to determine similarities and differences from results of chemical reactions between substances before and after they

undergo a chemical process. Analyze and interpret data on the properties of substances before and after they undergo a chemical process. Identify and describe possible correlation and causation relationships evidenced in chemical reactions. Make logical and conceptual connections between evidence that chemical reactions have occurred and explanations of the properties of substances before and after they undergo a chemical process. **Interdisciplinary Connections NJSLS-ELA NJSLS- Mathematics** Cite specific textual evidence to support analysis of science Reason abstractly and quantitatively. (MS-PS1-1), (MS-PS1-2) MP.2 Model with mathematics. (MS-PS1-1) MP.4 and technical texts, attending to the precise details of explanations or descriptions.(MS-PS1-2)RST.6-8.1 Use ratio and rate reasoning to solve real-world and mathematical problems. Integrate quantitative or technical information expressed in (MS-PS1-1),(MS-PS1-2) 6.RP.A.3 words in a text with a version of that information expressed Use numbers expressed in the form of a single digit times an integer power of 10 to visually (e.g., in a flowchart, diagram, model, graph, or estimate very large or very small quantities, and to express how many times as much one table). (MS-PS1-1),(MS-PS1-2) RST.6-8.7 is than the other. (MS-PS1-1) 8.EE.A.3 Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (MS-PS1-2) 6.SP.B.4 Summarize numerical data sets in relation to their context. (MS-PS1-2) 6.SP.B.5 Lab-Aids, Lab Materials, household chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod, **Core Instructional Materials** Scholastic Magazine, Blooket. 9.4.8.Cl.1: Assess data gathered on varying perspectives on causes of climate change (e.g., crosscultural, gender-specific, generational), and determine how the data can best be used to design multiple potential solutions (e.g., RI.7.9, 6.SP.B.5, 7.1.NH.IPERS.6, 8.2.8.ETW.4). 9.4.8.Cl.2: Repurpose an existing resource in an innovative way (e.g., 8.2.8.NT.3). 9.4.8.Cl.3: Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2). 9.4.8.CI.4: Explore the role of creativity and innovation in career pathways and industries. Career Readiness, Life 9.4.8.CT.1: Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or Literacies and Key Skills global problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective (e.g., MS-ETS1-2). 9.4.8.CT.2: Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most plausible option (e.g., MS-ETS1-4, 6.1.8.CivicsDP.1). 9.4.8.CT.3: Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a positive or negative outcome.

	· · · · · · · · · · · · · · · · · · ·
	9.4.8.DC.1: Analyze the resource citations in online materials for proper use.
	9.4.8.DC.2: Provide appropriate citation and attribution elements when creating media products (e.g., W.6.8).
	9.4.8.DC.8: Explain how communities use data and technology to develop measures to respond to effects of climate
	change (e.g., smart cities).
	9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group
	goal.
	9.4.8.IML.1: Critically curate multiple resources to assess the credibility of sources when searching for information.
	9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations.
	9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data.
	9.4.8.IML.7: Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose (e.g.,
	1.2.8.C2a, 1.4.8.CR2a, 2.1.8.CHSS/IV.8.AI.1, W.5.8, 6.1.8.GeoSV.3.a, 6.1.8.CivicsDP.4.b, 7.1.NH. IPRET.8).
	9.4.8.IML.8: Apply deliberate and thoughtful search strategies to access high-quality information on climate change
	(e.g., 1.1.8.C1b)
	9.4.8.IML.12: Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic
	audience.
	9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate
	data-based decision-making
	9.4.8.TL.2: Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4,
	6.1.8.EconET.1, 6.1.8.CivicsPR.4).
	9.4.8.TL.3: Select appropriate tools to organize and present information digitally.
	9.4.8.TL.4: Synthesize and publish information about a local or global issue or event (e.g., MSLS4-5, 6.1.8.CivicsPI.3).
	9.4.8.TL.6: Collaborate to develop and publish work that provides perspectives on a real-world problem.
	9.4.8.Cl.1: Assess data gathered on varying perspectives on causes of climate change (e.g., crosscultural,
	gender-specific, generational), and determine how the data can best be used to design multiple potential solutions
	(e.g., RI.7.9, 6.SP.B.5, 7.1.NH.IPERS.6, 8.2.8.ETW.4).
	8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
Computer Science and	8.1.8.DA.6: Analyze climate change computational models and propose refinements.
Design Thinking	8.2.8.ED.2: Identify the steps in the design process that could be used to solve a problem.

8.2.8.ED.3: Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype,							
	graphical/technical sketch).						
	8.2.8.ED.4: Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to						
	troubleshoot, evaluate, and test options to repair the product in a collaborative team.						
	8.2.8.ED.5: Explain the need for optimization in a design process.						
		e-offs can impact the design o					
			m and document the iterative	design process including			
	• .	•	-offs (e.g., annotated sketches)	• • •			
		chnologies have influenced so					
		-	•	warness of other took rolesies			
			to reduce the negative conseq	uences of other technologies			
	and explain the change in im						
		• •	different societies, noting fact	ors that may make a			
	<i>o,</i> , , , ,	sustainable in one society but					
	8.2.8.NT.4: Explain how a pro	duct designed for a specific de	emand was modified to meet a	new demand and led to a			
	new product.						
	8.2.8.ETW.2: Analyze the impact of modifying resources in a product or system (e.g., materials, energy, information,						
	time, tools, people, capital).						
	8.2.8.ETW.3: Analyze the design of a product that negatively impacts the environment or society and develop possible						
	solutions to lessen its impact.						
	8.2.8.ETW.4: Compare the environmental effects of two alternative technologies devised to address climate change						
	issues and use data to justify which choice is best.						
	<u> </u>	Modifications					
English Language Learners							
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	Word walls			
Word walls	Visual aides	Peer tutoring	Challenge assignments	Visual aides			
entence/paragraph frames Graphic organizers Study guides		Enrichment activities	Graphic organizers				
		Multimedia					
dictionaries/translation Leveled readers Extended time Independent Leveled readers		Leveled readers					
Think alouds	Think alouds Assistive technology Parent communication research/inquiry Assistive technolog			Assistive technology			
Read alouds Notes/summaries Modified assignments Collaborative teamwork Notes/summaries				-			
Highlight key vocabulary	ighlight key vocabulary Extended time Counseling Higher level questioning Extended time						

Annotation guides	Answer masking	Critical/Analytical thinking	Answer masking
Think-pair- share	Answer eliminator	tasks	Answer eliminator
Visual aides	Highlighter	Self-directed activities	Highlighter
Modeling	Color contrast		Color contrast
Cognates			Parent communication
			Modified assignments
			Counseling

PHYSICAL SCIENCE			
MS. Matter and Its Interactions			
MS-PS1-1. Develop models to describe t	he atomic composition of simple molecu	iles and extended structures.	
Clarification Statement: Emphasis is on d	eveloping models of molecules that vary	in complexity. Examples of simple molecules could include ammonia	
and methanol. Examples of extended stru	ctures could include sodium chloride or	diamonds. Examples of molecular-level models could include	
drawings, 3D ball and stick structures, or	computer representations showing differ	rent molecules with different types of atoms.	
Assessment Boundary: Assessment does	not include valence electrons and bondi	ng energy, discussing the ionic nature of subunits of complex	
structures, or a complete description of a	Il individual atoms in a complex molecule	e or extended structure is not required.	
Evidence Statements: MS-PS1-1			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models	PS1.A: Structure and Properties of	Scale, Proportion, and Quantity	
Modeling in 6–8 builds on K–5 and	<u>Matter</u>	Time, space, and energy phenomena can be observed at various	
progresses to developing, using and	Substances are made from different	scales using models to study systems that are too large or too small.	
revising models to describe, test, and	types of atoms, which combine with		
predict more abstract phenomena and	one another in various ways. Atoms		
design systems.	form molecules that range in size from		
Develop a model to predict and/or	two to thousands of atoms.		
describe phenomena.	Solids may be formed from molecules,		
	or they may be extended structures		
	with repeating subunits (e.g., crystals).		
Connections to other DCIs in this grade-b	oand: MS.ESS2.C		
Articulation of DCIs across grade-bands:			

Articulation of DCIs across grade-bands: 5.PS1.A ; HS.PS1.A ; HS.ESS1.A

NJSLS- ELA: RST.6-8.7		
NJSLS- Math: MP.2, MP.4, 6.RP.A.3, 8.EE.A.3		
	5E Model	
MS-PS1-1. Develo	p models to describe the atomic composition of simple molecules and extended structures.	
Engage Anticipatory Set	What is an Atom? To introduce this topic, have students view the following video. This video will provide a basic introduction into structure of atoms and molecules. http://www.makemegenius.com/science-videos/grade_7/all-about-atoms-and-molecules-for-kids	
	Have the students work in groups. Each group will be given a different simple molecule. Ex: ammonia, methanol. Research their molecule, find out its composition, identify the type of bond, and uses of the compound. Marshmallow Molecules	
Exploration	http://betterlesson.com/lesson/634009/marshmallow-molecules	
Student Inquiry	Digital Models:	
	https://phet.colorado.edu/en/simulation/build-a-molecule	
	Research the molecular structure of ammonia and methanol. Using PowerPoint, work in a group to create a digital model of these	
	simple molecules structures.	
Explanation Concepts and	In these lessons: Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
Practices	PS1.A: Structure and Properties of Matter	
	Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms.	
	Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1)	
Elaboration Extension Activity	Have students create a digital model of a complex, extended structure. Some extended structures the students' research can include: Diamonds, Sugar, Nylon.	
Evaluation Assessment Tasks	Assessment Task A Students will work in groups to develop a model using a digital presentation method (Powerpoint, Google Slides, Prezi, etc) The models must describe the atomic composition of simple molecules and extended structures.	

Develop a model to predict and/or describe phenomena.

	s before and after the substances interact to deter	mino if a chamical reaction
MS-PS1-2. Analyze and interpret data on the properties of substance has occurred.	s before and after the substances interact to deter	
Clarification Statement: Examples of reactions could include burning s hydrogen chloride.	ugar or steel wool, fat reacting with sodium hydrox	ide, and mixing zinc with
Assessment Boundary: Assessment is limited to analysis of the following	ng properties: density, melting point, boiling point,	solubility, flammability, and
odor.		
Evidence Statements: MS-PS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	PS1.A: Structure and Properties of Matter	Patterns
Analyzing data in 6–8 builds on K–5 and progresses to extending	Each pure substance has characteristic physical	Macroscopic patterns are
quantitative analysis to investigations, distinguishing between	and chemical properties (for any bulk quantity	related to the nature of
correlation and causation, and basic statistical techniques of data and	under given conditions) that can be used to	microscopic and atomic-le
error analysis.	identify it.	<u>structure.</u>
Analyze and interpret data to determine similarities and differences in	PS1.B: Chemical Reactions	
findings.	Substances react chemically in characteristic	
Connections to Nature of Science Scientific Knowledge is Based on	ways. In a chemical process, the atoms that make	
Empirical Evidence	up the original substances are regrouped into	
Science knowledge is based upon logical and conceptual connections	different molecules, and these new substances	
between evidence and explanations.	have different properties from those of the	
	reactants.	
Connections to other DCIs in this grade-band: MS.PS3.D ; MS.LS1.C ;	MS.ESS2.A	
Articulation of DCIs across grade-bands: N/		
CCSS- ELA: RST.6-8.1, RST.6-8.7		
CCSS- Math: MP.2, 6.RP.A.3, 6.SP.B.4, 6.SP.B.5		
· · ·		

MS-PS1-2. Analyze and in	terpret data on the properties of substances before and after the substances interact to determine if a chemical reaction
has occurred.	
Engage	Amazing Chemical Reactions: https://www.youtube.com/watch?v=FofPjj7v414
Anticipatory Set	http://betterlesson.com/lesson/634016/chemical-reactions-un-notes
	http://www.education.com/science-fair/article/balloon-gas-chemical-reaction/
	Students are placed in small groups, and given samples of baking soda and white vinegar. In their groups, they must
	observe and classify each substance's individual physical properties. Using a graphic organizer, a list of each substance's
	properties will be collaboratively developed. After the initial investigation, one representative from each student group
	will share their group's list of physical properties with the whole class. During this time, students from different groups can
	record additional properties or correct mislabeled properties. The teacher will then briefly explain the exploration activity
	and appropriate safety procedures to students. Prior to the exploration activity, the teacher may ask the following guiding
	questions to engage students:
	\cdot What do you think will happen when baking soda and vinegar come in contact (what will be produced)?
	· What do you think will happen to the balloon attached?
Exploration	Using the funnel, each student group will add 2 tablespoons of baking soda to each balloon (two people may be needed
Student Inquiry	for this; one person to hold the balloon open and the other person to put the baking soda inside of the balloon). Then the
	group will pour 4 ounces of vinegar into the bottle. Students will carefully fit the balloon over the bottle opening, and be
	careful not to drop the baking soda into the vinegar yet. Once the balloon is fitted snugly on the nozzle, students will hold
	up the balloon and allow the baking soda to fall into the vinegar. Students will observe the chemical reaction and effect on
	the balloon and record observations/data/visuals in their science journals.
	Students will respond to the following prompts in their science journals following this exploration activity in words and
	using pictorial representations:
	· Which two substances combined?
	· What happened when the two substances combined? How do you know?
	· What was formed as a product of the reaction? Explain your reasoning.
	· Why is this a chemical reaction? Use evidence to support your thinking.
	In these lessons:
Explanation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Concepts and Practices	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):

	PS1.A: Structure and Properties of Matter
	Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions)
	that can be used to identify it. (MS-PS1-2)
	PS1.B: Chemical Reactions
	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances
	are regrouped into different molecules, and these new substances have different properties from those of the reactants.
	<u>(MS-PS1-2)</u>
	Student groups will reassemble and follow the same procedure from the exploration activity. However, the vinegar
	component will be replaced with a "mystery substance". Each group will receive a different mystery substance (water,
	hydrogen peroxide) to combine with the baking soda. Following the experiment, students will have to determine whether
	or not a chemical reaction took place.
	If time permits, each group of students will research (using online resources) a career in the field of Chemistry in pursuit
	of the following information:
Elaboration	· Briefly describe the purpose of this job.
Extension Activity	· What are some specific tasks?
	· What kind of education and experience is required?
	· Describe the kinds of places that people with this job might work. (For example, in a lab, outside, or in an office?)
	In what types of companies do people with this job work?
	Using this research as a guide, each individual student of the group will create a narrative piece describing a day in the life
	of a person with that particular profession.
	Assessment Task A: Analysis & Interpretation of Data
Evaluation	Analyze and interpret data to determine similarities and differences in findings.
Assessment Tasks	Have students work independently to summarize, in writing, if a chemical reaction has occurred. Students should include
	evidence based upon observations from exploration activity.

Unit 4: Overview

Unit 4: Relationships Among Forms of Energy

Grade: 8

Content Area: Physical Science

Pacing: 20 Instructional Days

Essential Question

How can physics explain sports?

Student Learning Objectives (Performance Expectations)

MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Unit Summary

In this unit, students use the practices of analyzing and interpreting data, developing and using models, and engaging in argument from evidence to make sense of relationship between energy and forces. Students develop their understanding of important qualitative ideas about the conservation of energy. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students also understand the difference between energy and temperature, and the relationship between forces and energy. The crosscutting concepts of scale, proportion, and quantity, systems and system models, and energy and matter are called out as organizing concepts for these disciplinary core ideas. Students use the practices of analyzing and interpreting data, developing and using models, and engaging in argument from evidence to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Kinetic energy, potential energy, electric interactions, magnetic interaction, gravitational interactions, empirical evidence

Formative Assessment Measures

Part A: Is it better to have an aluminum (baseball/softball) bat or a wooden bat?

Students who understand the concepts are able to:

Construct and interpret graphical displays of data to identify linear and nonlinear relationships of kinetic energy to the mass of an object and to the speed of an object.

Part B: What would give you a better chance of winning a bowling match, using a basketball that you can roll really fast, or a bowling ball that you can only roll slowly?

Students who understand the concepts are able to:

Develop a model to describe what happens to the amount of potential energy stored in the system when the arrangement of objects interacting at a distance changes

Use models to represent systems and their interactions, such as inputs, processes, and outputs, and energy and matter flows within systems. Models could include representations, diagrams, pictures, and written descriptions.

Part C: Who can design the best roller coaster?

Students who understand the concepts are able to:

Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Conduct an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of an object. Do not include calculations of energy.

Interdisciplinary Connections			
NJSLS- ELA		NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science		Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-5) MP.2	
and technical texts, attending	to the precise details of	Understand the concept of ratio and use ratio language to describe a ratio relationship	
explanations or descriptions.	(MS-PS3-1),(MS-PS3-5)	between two quantities. (MS-PS3-1),(MS-PS3-5) 6.RP.A.1	
RST.6-8.1		Understand the concept of a unit rate a/b associated with a ratio a:b with b \neq 0, and use	
Integrate quantitative or tech	nical information expressed in	rate language in the context of a ratio relationship. (MS-PS3-1) 6.RP.A.2	
words in a text with a version	of that information expressed	Recognize and represent proportional relationships between quantities.	
visually (e.g., in a flowchart, d	iagram, model, graph, or	(MS-PS3-1),(MS-PS3-5) 7.RP.A.2	
table). (MS-PS3-1) RST.6-8.7		Know and apply the properties of integer exponents to generate equivalent numerical	
Write arguments focused on c	discipline content. (MS-PS3-5)	expressions. (MS-PS3-1) 8.EE.A.1	
WHST.6-8.1		Use square root and cube root symbols to represent solutions to equations of the form x2	
Conduct short research project	cts to answer a question	= p and x3 = p, where p is a positive rational number. Evaluate square roots of small	
(including a self-generated qu	estion), drawing on several	perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	
sources and generating addition	onal related, focused	(MS-PS3-1) 8.EE.A.2	
questions that allow for multi	ple avenues of exploration.	Interpret the equation y = mx + b as defining a linear function, whose graph is a straight	
(MS-PS3-3) WHST.6-8.7		line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-5) 8.F.A.3	
Integrate multimedia and visu	al displays into presentations		
to clarify information, strengt	hen claims and evidence, and		
add interest. (MS-PS3-2) SL.8.5			
Core Instructional Materials		ehold chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod,	
	Scholastic Magazine, Blooket.		
Career Readiness, Life	9.4.8.IML.1 Critically curate m	ultiple resources to assess the credibility of sources when searching for information.	
Literacies and Key Skills	es and Key Skills 9.4.8.IML Ask insightful questions to organize different types of data and create meaningful visualizations.		

		9.4.8.IML.12 Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic audience.		
	0.4.8.TL.2 Gather data and digitally represent information to communicate a real-world problem. 0.4.8.TL.3 Select appropriate tools to organize and present information digitally.			
	-	-	mputational tools to make it us	
Computer Science and			d problem that includes a mod	el.
Design Thinking	8.2.8.ETW.2 Analyze the imp	act of modifying resources in	a product or system.	
	8.1.8.AP.2Create clearly nam	<u>ed variables that represent di</u>	fferent data types and perform	operations on their values.
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	504
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	Word walls
Word walls	Visual aides	Peer tutoring	Challenge assignments	Visual aides
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	Graphic organizers
Bilingual	Multimedia	Graphic organizers	Tiered activities	Multimedia
dictionaries/translation	Leveled readers	Extended time	Independent	Leveled readers
Think alouds	Assistive technology	Parent communication	research/inquiry	Assistive technology
Read alouds	Notes/summaries	Modified assignments	Collaborative teamwork	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Higher level questioning	Extended time
Annotation guides	Answer masking		Critical/Analytical thinking	Answer masking
Think-pair- share	Answer eliminator		tasks	Answer eliminator
Visual aides	Highlighter		Self-directed activities	Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

MS. Energy

MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball. Assessment Boundary: N/A

Evidence Statements	<u>: MS-PS3-1</u>				
Science & Engi	neering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Analyzing and Interp	oreting Data	PS3.A: Definitions of Energy	Scale, Proportion, and Quantity		
Analyzing data in 6–8			Proportional relationships (e.g. speed as the ratio of distance		
progresses to extend	ing quantitative	kinetic energy; it is proportional to the	traveled to time taken) among different types of quantities provide		
<u>analysis to investigat</u>	ions, distinguishing	mass of the moving object and grows	information about the magnitude of properties and processes.		
between correlation		with the square of its speed.			
basic statistical techr	niques of data and				
error analysis.					
Construct and interp					
<u>of data to identify lin</u>	ear and nonlinear				
relationships.					
	r DCIs in this grade-ba				
	•	PS3.B ; HS.PS3.A ; HS.PS3.B			
NJSLS- ELA: RST.6-8.1	-				
NJSLS- Math: MP.2, 6	5.RP.A.2, 7.RP.A.2, 8.EE				
		5E MODEL			
	and interpret graphic	al displays of data to describe the relati	onships of kinetic energy to the mass of an object and to the		
speed of an object.					
Engage	Using the following re	source, students will view videos, read a	articles and engage in interactive simulation s related to kinetic		
Anticipatory Set	energy.				
	http://www.ck12.org/ngss/middle-school-physical-sciences/energy				
	Kinetic and Potential B				
Exploration	In these lab activities, students will determine the relationship among the energy transferred, the type of matter, the mass and				
Student Inquiry	the change in the average kinetic energy of the particles. Students will construct and interpret graphical displays on their data dn				
	construct, use, and present arguments to support a claim.				
	http://betterlesson.com/lesson/640019/exploring-the-relationship-between-potential-kinetic-energy				
	In these lessons:				
Explanation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.				

Concepts and	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS3.A: Definitions of Energy		
	Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of		
	its speed.		
Elaboration	Rubber Band Cannon Lab		
	Students use rubber band cannons to explore potential and kinetic energy transfer!		
Extension Activity	http://betterlesson.com/lesson/633996/rubber-band-cannon-lab		
	Assessment Task A		
Evaluation	Construct and interpret graphical displays of data to identify linear and nonlinear relationships.		
Assessment Tasks	Students will construct and interpret graphical displays on their data and construct, use, and present arguments to support a		
	claim. Complete Energy Skate Park Exploration Potential and Kinetic Energy activity guide.		

PHYSICAL SCIENCE				
MS. Energy				
MS-PS3-2. Develop a model to des	cribe that when the arrangement of objects	interacting at a distance changes, different amounts of potential		
energy are stored in the system.				
Clarification Statement: Emphasis	is on relative amounts of potential energy, no	t on calculations of potential energy. Examples of objects within		
systems interacting at varying dista	nces could include: the Earth and either a roll	er coaster cart at varying positions on a hill or objects at varying		
heights on shelves, changing the di	rection/orientation of a magnet, and a balloo	n with static electrical charge being brought closer to a classmate's		
hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.				
Assessment Boundary: Assessmen	t is limited to two objects and electric, magne	tic, and gravitational interactions.		
Evidence Statements: MS-PS3-2				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Developing and Using Models	PS3.A: Definitions of Energy	Systems and System Models		
Modeling in 6–8 builds on K–5 and	odeling in 6–8 builds on K–5 and A system of objects may also contain stored Models can be used to represent systems and their interactions –			
progresses to developing, using	gresses to developing, using (potential) energy, depending on their such as inputs, processes, and outputs – and energy and matter flow			
and revising models to describe,	evising models to describe, relative positions. within systems.			

test, and predict m	oro abstract	PS3.C: Relationship Between Energy and		
phenomena and d				
Develop a model to		When two objects interact, each one exerts a		
unobservable mec	<u>hanisms.</u>	force on the other that can cause energy to		
		be transferred to or from the object.		
Connections to ot	her DCIs in this	grade-band: N/A		
Articulation of DC	Is across grade-	bands: HS.PS2.B ; HS.PS3.B ; HS.PS3.C		
NJSLS- ELA: SL.8.5				
NJSLS- Math: N/A				
		5E MODEL		
MS-PS3-2. Develo	<u>p a model to de</u>	scribe that when the arrangement of objects i	interacting at a distance changes, different amounts of potential	
energy are stored	in the system.			
	Roller Coast Sci	ence: Video		
Engage	http://www.dis	http://www.discovery.com/tv-shows/other-shows/videos/time-warp-roller-coaster-science/		
Anticipatory Set	Roller Coaster: Engineering and Construction			
	http://www.sciencechannel.com/video-topics/engineering-construction/machines-rollercoaster/			
	Building Roller	<u>Coasters</u>		
Exploration	Students will work in pairs/groups to create a physical roller coaster. Refer to the following website for detailed instructions and			
	student worksheets.			
Student Inquiry	https://www.teachengineering.org/view_activity.php?url=collection/duk_/activities/duk_rollercoaster_music_act/duk_rollercoaste			
	r_music_act.xml			
	In these lesson	<u>5:</u>		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			
Concepts and	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):			
Practices	PS3.A: Definitions of Energy			
	A system of objects may also contain stored (potential) energy, depending on their relative positions.			
	PS3.C: Relationship Between Energy and Forces			

	When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.
Elaboration Extension Activity	Hold discussion on why some roller coasters failed, show videos of X-games events involving energy transformations and motion. Students will be encouraged to participate in discussion about what they viewed and why certain X-games athletes were successful in certain tricks while others failed.
Evaluation Assessment Tasks	<u>Assessment Task A</u> <u>Develop a model to describe unobservable mechanisms.</u> <u>Students will complete Roller Coaster worksheet.</u>

PHYSICAL SCIENCE					
MS. Energy					
MS-PS3-5. Construct, use, and present argum	ents to support the claim that when t	he kinetic energy of an object changes, energy is transferred to			
or from the object.					
Clarification Statement: Examples of empirica	I evidence used in arguments could inc	clude an inventory or other representation of the energy before			
and after the transfer in the form of temperat	ure changes or motion of object.				
Assessment Boundary: Assessment does not	include calculations of energy.				
Evidence Statements: MS-PS3-5					
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts			
Engaging in Argument from Evidence	PS3.B: Conservation of Energy and	Energy and Matter			
Engaging in argument from evidence in 6–8	Energy Transfer	Energy may take different forms (e.g. energy in fields, thermal			
builds on K–5 experiences and progresses to	When the motion energy of an object	energy, energy of motion).			
constructing a convincing argument that	changes, there is inevitably some				
supports or refutes claims for either	other change in energy at the same				
explanations or solutions about the natural	explanations or solutions about the natural time.				
and designed worlds.	and designed worlds.				
Construct, use, and present oral and written	struct, use, and present oral and written				
arguments supported by empirical evidence					
nd scientific reasoning to support or refute					
an explanation or a model for a	explanation or a model for a				
<u>phenomenon.</u>					

Connections to N	ature of Science		
Scientific Knowle	dge is Based on Empirical		
Evidence			
Science knowledg	e is based upon logical and		
conceptual conne	ctions between evidence		
and explanations			
Connections to of	her DCIs in this grade-band:	: MS.PS2.A	
Articulation of DC	Cls across grade-bands: 4.PS3	3.C ; HS.PS3.A ; HS.PS3.B	
NJSLS- ELA: RST.6	-8.1, WHST.6-8.1		
NJSLS- Math: MP.	2, 6.RP.A.1, 7.RP.A.2, 8.F.A.3	3	
		5E MODEL	
MS-PS3-5. Constr	uct, use, and present argum	ents to support the claim that when t	he kinetic energy of an object changes, energy is transferred to
or from the objec	<u>t.</u>		
Engago	Using the following resource	es have students view videos, read arti	cles and engage in discussion on how kinetic energy changes,
Engage Anticipatory Set	energy is transferred to or fr	rom objects. Go to the MS-PS3-5 section	on of the page.
Anticipatory Set	http://www.ck12.org/ngss/middle-school-physical-sciences/energy		
	Show students videos comparing crash tests on vehicles traveling at different speeds into different barriers and ask students to		
	collaborate and show how e	energy transfers are occurring in the vio	deo.
Exploration	Energy Transfer: Engineering		
Student Inquiry	In this activity, students will describe and model situations in which different amounts of potential energy are stored in a system and		
	support the claim that when the kinetic energy of an object changes, that energy that has been transferred to or from the objects in		
	the system.		
	http://betterlesson.com/lesson/633997/energy-transfer-engineering-catapults		
	In these lessons:		
Explanation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Concepts and	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS3.B: Conservation of Energy and Energy Transfer		

	When the motion energy of an object changes, there is inevitably some other change in energy at the same time.	
Elaboration	Egg Projectile Project	
Extension Activity	http://www.ehow.com/how_8405300_do-egg-projectile-project.html	
	Assessment Task A	
Evaluation	Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or	
Assessment Tasks	refute an explanation or a model for a phenomenon.	
Assessment lasks	Students will complete Step 7 in the Energy Transfer Lab Activity. Using the Quick Guide to Creating a Well Developed Paragraph in	
	Science, students will construct an argument supported by evidence.	

Unit 5: Overview
Unit 5: Thermal Energy
Grade: 8
Content Area: Physical Science
Pacing: 30 Instructional Days
Essential Question
How can a standard thermometer be used to tell you how particles are behaving?
Student Learning Objectives (Performance Expectations)
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the
problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of
each that can be combined into a new solution to better meet the criteria for success.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal
design can be achieved.
MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the
average kinetic energy of the particles as measured by the temperature of the sample.
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account
relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Unit Summary
In this unit, students ask questions, plan and carry out investigations, engage in argument from evidence, analyze and interpret data, construct explanations, define problems and design solutions as they make sense of the difference between energy and temperature. They use the practices to make sense of how the total change of energy in any system is always equal to the total energy transferred into or out of the system. The crosscutting concepts of energy and matter, scale, proportion, and quantity, and influence of science, engineering, and technology on society and the natural world are the organizing concepts for these disciplinary core ideas. Students ask questions, plan and carry out investigations, engage in argument from evidence, analyze and interpret data, construct explanations, define problems and design solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.
Technical Terms
Thermal energy transfer, thermal dynamics, fahrenheit, kinetic energy, mass, potential energy, gravity , conduction , convection, radiation, calorimetry

Formative Assessment Measures

Part A: How can a standard thermometer be used to tell you how particles are behaving?

Students who understand the concepts are able to:

Individually and collaboratively plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of particles as measured by the temperature of the sample.

As part of a planned investigation, identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Make logical and conceptual connections between evidence and explanations.

Part B: You are an engineer working for NASA. In preparation for a manned space mission to the Moon, you are tasked with designing, constructing, and testing a device that will keep a hot beverage hot for the longest period of time. It costs approximately \$10,000 per pound to take payload into orbit so the device must be lightweight and compact. The lack of atmosphere on the Moon produces temperature extremes that range from -157 degrees C in the dark to +121 degrees C in the light. Your devise must operate on either side of the Moon

(https://spaceflightsystems.grc.nasa.gov/education/rocket/moon.html).

Students who understand the concepts are able to:

Apply scientific ideas or principles to design, construct, and test a design of a device that either minimizes or maximizes thermal energy transfer.

Determine design criteria and constraints for a device that either minimizes or maximizes thermal energy transfer.

Test design solutions and modify them on the basis of the test results in order to improve them.

Use a systematic process for evaluating solutions with respect to how well they meet criteria and constraints.

	Interdisciplinary Connections
NJSLS- ELA	NJSLS- Mathematics
Cite specific textual evidence to support analysis of science	Reason abstractly and quantitatively.
and technical texts.	(MS-PS3-4),(MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4) MP.2
(MS-PS3-5),MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) RST.6-8.1	Summarize numerical data sets in relation to their context. (MS-PS3-4) 6.SP.B.5
Follow precisely a multistep procedure when carrying out	Solve multi-step real-life and mathematical problems posed with positive and negative
experiments, taking measurements, or performing technical	rational numbers in any form (whole numbers, fractions, and decimals), using tools
tasks. (MS-PS3-3),(MS-PS3-4) RST.6-8.3	strategically. Apply properties of operations to calculate with numbers in any form;
Integrate quantitative or technical information expressed in	convert between forms as appropriate; and assess the reasonableness of answers using
words in a text with a version of that information expressed	mental computation and estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3)
visually (e.g., in a flowchart, diagram, model, graph, or	7.EE.3
table). (MS-PS3-3),(MS-PS3-4),(MS-ETS1-3) RST.6-8.7	

Compare and contrast the info	ormation gained from	Develop a probability model and use it to find probabilities of events. Compare	
experiments, simulations, videos, or multimedia sources		probabilities from a model to observed frequencies; if the agreement is not good, explain	
with that gained from reading a text on the same topic.		possible sources of the discrepancy. (MS-ETS1-4) 7.SP	
(MS-ETS1-2),(MS-ETS1-3) RST.6-8.9			
Conduct short research projects to answer a question			
(including a self-generated que	estion), drawing on several		
sources and generating addition	onal related, focused		
questions that allow for multip	ole avenues of exploration.		
(MS-ETS1-2) WHST.6-8.7	·		
Gather relevant information fr	om multiple print and digital		
sources, using search terms ef			
and accuracy of each source; a	and quote or paraphrase the		
data and conclusions of others	s while avoiding plagiarism		
and following a standard form	at for citation. (MS-ETS1-1)		
WHST.6-8.8			
Draw evidence from informati	onal texts to support analysis,		
reflection, and research. (MS-I	ETS1-2) WHST.6-8.9		
Integrate multimedia and visu	al displays into presentations		
to clarify information, strength	nen claims and evidence, and		
add interest. (MS-ETS1-4) SL.8	.5		
I Oro Instructional Materials	Lab-Aids, Lab Materials, house Scholastic Magazine, Blooket.	ehold chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod,	
		ng resource in an innovative way.	
		that may exist in the adoption of new ideas.	
		lutions to a problem and evaluate short- and long-term effects to determine the most	
Carpor Roadinoss Lito	plausible option. 9.4.8.DC.1 Analyze the resource citation in online materials for proper use.		
literacies and Key Skills	· · ·	nness to diverse ideas and perspectives through active discussions to achieve a group goal.	
		stions to organize different types of data and create meaningful visualizations.	
	9.4.8.IML7 Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose.		
		s to produce, publish, and deliver information supported with evidence for an authentic	

	audience.			
	9.4.8.TL.2 Gather data and digitally represent information to communicate a real-world problem.			oblem.
9.4.8.TL.3 Select appropriate tools to organize and present information digitally.				
	9.4.8.TL.6 Collaborate to deve	elop and publish work that pro	ovides perspectives on a real-w	orld problem.
Computer Science and	8.1.8.DA.1Organiza and trans	form data collected using con	nputational tools to make it usa	ble for a specific purpose.
Computer Science and	8.2.8.ED.3 Develop a proposa	I for a solution to a real-world	d problem that includes a mode	el.
Design Thinking	8.2.8.ETW.2 Analyze the impa	act of modifying resources in a	a product or system.	
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	504
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	Word walls
Word walls	Visual aides	Peer tutoring	Challenge assignments	Visual aides
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	Graphic organizers
Bilingual	Multimedia	Graphic organizers	Tiered activities	Multimedia
dictionaries/translation	Leveled readers	Extended time	Independent research/inquir	y Leveled readers
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	Assistive technology
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking	Extended time
Annotation guides	Answer masking		tasks	Answer masking
Think-pair- share	Answer eliminator		Self-directed activities	Answer eliminator
Visual aides	Highlighter			Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

PHYSICAL SCIENCE

MS. Energy

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

Evidence Statements: MS-PS3-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Constructing Explanations and	PS3.A: Definitions of Energy	Energy and Matter		
Designing Solutions	Temperature is a measure of the average kinetic energy	The transfer of energy can be tracked as energy flows		
Constructing explanations and	of particles of matter. The relationship between the	through a designed or natural system.		
designing solutions in 6–8 builds on	temperature and the total energy of a system depends			
K–5 experiences and progresses to	on the types, states, and amounts of matter present.			
include constructing explanations	PS3.B: Conservation of Energy and Energy Transfer			
and designing solutions supported	Energy is spontaneously transferred out of hotter			
by multiple sources of evidence	regions or objects and into colder ones.			
<u>consistent with scientific ideas,</u>	ETS1.A: Defining and Delimiting an Engineering			
principles, and theories.	<u>Problem</u>			
Apply scientific ideas or principles	The more precisely a design task's criteria and			
to design, construct, and test a	constraints can be defined, the more likely it is that the			
design of an object, tool, process or	designed solution will be successful. Specification of			
<u>system.</u>	constraints includes consideration of scientific			
	principles and other relevant knowledge that is likely to			
	limit possible solutions. (secondary)			
	ETS1.B: Developing Possible Solutions			
	A solution needs to be tested, and then modified on			
	the basis of the test results in order to improve it.			
	There are systematic processes for evaluating solutions			
	with respect to how well they meet criteria and			
	constraints of a problem. (secondary)			
Connections to other DCIs in this grade-band: MS.PS1.B ; MS.ESS2.A ; MS.ESS2.C ; MS.ESS2.D				
Articulation of DCIs across grade-bands: 4.PS3.B ; HS.PS3.B				
NJSLS- ELA: RST.6-8.3, WHST.6-8.7				
NJSLS- Math: N/A				
5E MODEL				
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.				

	Using the following resources have students view videos, read articles and engage in discussion about thermal energy transfer. Go
Engage	to MS-PS3-3 section of the page.
Anticipatory Set	http://www.ck12.org/ngss/middle-school-physical-sciences/energy
	Build a Solar Oven
	In this activity, students will design, test and construct a solar oven, providing a concrete example of thermal energy transfer.
Exploration	http://www.hometrainingtools.com/a/build-a-solar-oven-project
Student Inquiry	Thermal Protection Systems: Day 1
	In this activity, students will apply scientific principles to design, construct and test a device that either minimizes or maximises
	thermal energy transfer.
	http://betterlesson.com/lesson/634000/thermal-protection-systems-day-1
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS3.A: Definitions of Energy
	Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the
Explanation	total energy of a system depends on the types, states, and amounts of matter present.
Concepts and	PS3.B: Conservation of Energy and Energy Transfer
Practices	Energy is spontaneously transferred out of hotter regions or objects and into colder ones.
	ETS1.A: Defining and Delimiting an Engineering Problem
	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be
	successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to
	limit possible solutions. (secondary)
	ETS1.B: Developing Possible Solutions
	A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic
	processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary)
	Build a Thermos
Elaboration	In this activity, students will design, construct and test a thermos structure to determine which model keeps the warmest
Extension Activity	temperature.
	http://betterlesson.com/lesson/628050/build-a-thermos

	Assessment Task A
	Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.
Evaluation	Students will be assessed based upon the execution of design and effectiveness of solar oven. If solar oven is not effective, students
Assessment Tasks	should demonstrate the ability to brainstorm solutions to modify and/or change design to make it work.
	Assessment Task B
	Thermal Protection System Design Challenge Student Lab Sheet

ENGINEERING DESIGN				
MS-ETS1-2 Engineering Design				
MS-ETS1-2. Evaluate competing design solut	tions using a systematic process to determi	ne how well they meet the criteria and constraints of the		
problem.				
Evidence Statements: MS-ETS1-2				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions			
Engaging in argument from evidence in 6–8	There are systematic processes for			
builds on K–5 experiences and progresses to	evaluating solutions with respect to how			
constructing a convincing argument that	well they meet the criteria and constraints			
supports or refutes claims for either	of a problem.			
explanations or solutions about the natural				
and designed world.				
Evaluate competing design solutions based				
on jointly developed and agreed-upon				
design criteria.				
Connections to MS-ETS1.B: Developing Poss	ible Solutions Problems include: Physical S	cience: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5		
Articulation of DCIs across grade-bands: 3-5	.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.	A ; HS.ETS1.B		
NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7	, WHST.6-8.9			
NJSLS- Math: MP.2, 7.EE.3				

each that can be combined into a new solution	mine similarities and differences among several design solutions to on to better meet the criteria for success.	
vidence Statements: MS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions	
Analyzing data in 6–8 builds on K–5	There are systematic processes for evaluating solutions with	
experiences and progresses to extending	respect to how well they meet the criteria and constraints of	
quantitative analysis to investigations,	a problem.	
listinguishing between correlation and	Sometimes parts of different solutions can be combined to	
ausation, and basic statistical techniques of	create a solution that is better than any of its predecessors.	
lata and error analysis.	ETS1.C: Optimizing the Design Solution Although one design	
nalyze and interpret data to determine	may not perform the best across all tests, identifying the	
imilarities and differences in findings.	characteristics of the design that performed the best in each	
	test can provide useful information for the redesign	
	process—that is, some of those characteristics may be	
	incorporated into the new design.	
Connections to MS-ETS1.B: Developing Poss	ible Solutions Problems include: Physical Science: MS-PS1-6, MS-P	S3-3, Life Science: MS-LS2-5
Connections to MS-ETS1.C: Optimizing the D	esign Solution include: Physical Science: MS-PS1-6	
Articulation of DCIs across grade-bands: 3-5.	ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C	
NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9		
NJSLS- Math: MP.2, 7.EE.3		

ENGINEERING DESIGN

MS-ETS1-4 Engineering Design

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Evidence Statements: MS-ETS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ETS1.B: Developing Possible Solutions	
Modeling in 6–8 builds on K–5 experiences and	A solution needs to be tested, and then modified on	
progresses to developing, using, and revising	the basis of the test results, in order to improve it.	
models to describe, test, and predict more abstract	Models of all kinds are important for testing	
phenomena and design systems.	solutions.	
Develop a model to generate data to test ideas	ETS1.C: Optimizing the Design Solution The iterative	
about designed systems, including those	process of testing the most promising solutions and	
representing inputs and outputs.	modifying what is proposed on the basis of the test	
	results leads to greater refinement and ultimately to	
	an optimal solution.	
Connections to MS-ETS1.B: Developing Possible So	lutions Problems include: Physical Science: MS-PS1-	5, MS-PS3-3, Life Science: MS-LS2-5
Connections to MS-ETS1.C: Optimizing the Design	Solution include: Physical Science: MS-PS1-6	
Articulation of DCIs across grade-bands: 3-5.ETS1.	3 ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C	
NJSLS- ELA: SL.8.5		
NJSLS- Math: MP.2, 7.SP		

PHYSICAL SCIENCE

MS. Energy

MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

Evidence Statements: MS-PS3-4

Science & Engineering Practices Disciplinary Core Ideas		Cross-Cutting Concepts
	PS3.A: Definitions of Energy	Scale, Proportion, and Quantity
Planning and Carrying Out Investigations		

Planning and carryin	g out investigations to	Temperature is a measure of the average	Proportional relationships (e.g. speed as the ratio of distance	
answer questions or	test solutions to	kinetic energy of particles of matter. The	traveled to time taken) among different types of quantities	
problems in 6–8 buil	ds on K–5 experiences	relationship between the temperature and	provide information about the magnitude of properties and	
and progresses to inc	clude investigations	the total energy of a system depends on	processes.	
<u>that use multiple var</u>	iables and provide	the types, states, and amounts of matter		
evidence to support	explanations or design	present.		
<u>solutions.</u>		PS3.B: Conservation of Energy and Energy		
Plan an investigation	individually and	<u>Transfer</u>		
collaboratively, and i	n the design: identify	The amount of energy transfer needed to		
independent and dep	pendent variables and	change the temperature of a matter		
controls, what tools a	are needed to do the	sample by a given amount depends on the		
gathering, how meas	surements will be	nature of the matter, the size of the		
recorded, and how m	<u>nany data are needed</u>	sample, and the environment.		
<u>to support a claim.</u>				
Connections to Natu	ire of Science			
Scientific Knowledge	e is Based on Empirical			
Evidence				
Science knowledge is	s based upon logical			
and conceptual conn	ections between			
evidence and explana	ations			
Connections to othe	r DCIs in this grade-bar	nd: MS.PS1.A ; MS.PS2.A ; MS.ESS2.C ; MS.	ESS2.D ; MS.ESS3.D	
Articulation of DCIs a	across grade-bands: 4.	PS3.C ; HS.PS1.B ; HS.PS3.A ; HS.PS3.B		
NJSLS- ELA: RST.6-8.3	3, WHST.6-8.7			
NJSLS- Math: MP.2, 6	6.SP.B.5			
		5E MODEL		
MS-PS3-4. Plan an in	vestigation to determi	ne the relationships among the energy tra	nsferred, the type of matter, the mass, and the change in the	
average kinetic energy of the particles as measured by the temperature of the sample.				
Engage	Using the following res	ources have students view videos, read arti	cles and engage in discussion on how energy, mass and mater	
Anticipatory Set	impact temperatures.			

	http://www.ck12.org/ngss/middle-school-physical-sciences/energy	
	Heat Transfer Lab Rotation: Conduction, Convection and Radiation	
	In this lab activity, students will identify and explain the various ways that heat transfers through systems in the natural world.	
Evaloration	http://betterlesson.com/lesson/634878/heat-transfer-lab-rotation-conduction-convection-and-radiation	
Exploration Student Inquiry	Materials Affect the Rate of Heat Transfer - Experimental Design	
	In this activity, students will compare different materials to determine which ones are better at preventing heat transfer. Using a	
	given set of materials, students will work to design a penguin home which can maintain a cool temperature.	
	http://betterlesson.com/lesson/635989/materials-affect-the-rate-of-heat-transfer-experimental-design	
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
Concepts and	PS3.A: Definitions of Energy	
Practices	Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the	
Tactices	total energy of a system depends on the types, states, and amounts of matter present.	
	PS3.B: Conservation of Energy and Energy Transfer	
	The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of	
	the matter, the size of the sample, and the environ	
Elaboration	Related Activities	
Extension Activity	http://participatoryscience.org/standard/ms-ps3-4	
	Assessment Task A: Materials Affect the Rate of Heat Transfer- Penguin Home Design	
	Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls,	
Evaluation	what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a	
Assessment Tasks	<u>claim.</u>	
	Students will be evaluated on the planning and implementation of their penguin home design. The success of each student design	
	will ultimately be tested by its ability to maintain a cool temperature.	

	ENGINEERING DESIGN	
MS-ETS1-1 Engineering Design		
MS-ETS1-1. Define the criteria and constraints of a	design problem with sufficient precision to	ensure a successful solution, taking into account
relevant scientific principles and potential impacts	on people and the natural environment the	at may limit possible solutions.
Evidence Statements: MS-ETS1-1		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting	Influence of Science, Engineering, and Technology on
Asking questions and defining problems in grades	Engineering Problems	Society and the Natural World
6–8 builds on grades K–5 experiences and	The more precisely a design task's criteria	All human activity draws on natural resources and has
progresses to specifying relationships between	and constraints can be defined, the more	both short and long-term consequences, positive as well
variables, and clarifying arguments and models.	likely it is that the designed solution will be	as negative, for the health of people and the natural
Define a design problem that can be solved through	successful. Specification of constraints	environment. The uses of technologies and limitations on
the development of an object, tool, process or	includes consideration of scientific	their use are driven by individual or societal needs,
system and includes multiple criteria and	principles and other relevant knowledge	desires, and values; by the findings of scientific research;
constraints, including scientific knowledge that may	that are likely to limit possible solutions.	and by differences in such factors as climate, natural
limit possible solutions.		resources, and economic conditions.
Connections to MS-ETS1.A: Defining and Delimiting	Engineering Problems include: Physical Sc	ience: MS-PS3-3
Articulation of DCIs across grade-bands: 3-5.ETS1.A	; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B	
NJSLS- ELA: RST.6-8.1, WHST.6-8.8		
NJSLS- Math: MP.2, 7.EE.3		

Unit 6: Overview

Unit 6: The Electromagnetic Spectrum

Grade: 8

Content Area: Physical Science

Pacing: 20 Instructional Days

Essential Question

How do cell phones work?

Student Learning Objectives (Performance Expectations)

MS-PS4-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Unit Summary

In this unit of study, students develop and use models, use mathematical thinking, and obtain, evaluate, and communicate information in order to describe and predict characteristic properties and behaviors of waves. Students also apply their understanding of waves as a means of sending digital information. The crosscutting concepts of patterns and structure and function are used as organizing concepts for these disciplinary core ideas. Students develop and use models, use mathematical thinking, and obtain, evaluate, and communicate information. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Amplitude, wavelength, electromagnetic waves, repeating waves, reflected waves, absorbed waves, transmitted, waves, refracted waves, analog signals, fiber optic cable, light pulses, radio wave pulses, binary patterns

Formative Assessment Measures

Part A: Why do surfers love physicists?

Students who understand the concepts are able to:

Use mathematical representations to describe and/or support scientific conclusions about how the amplitude of a wave is related to the energy in a wave.

Use mathematical representations to describe a simple model.

Part B: How do the light and sound system in the auditorium work?

Students who understand the concepts are able to:

Develop and use models to describe the movement of waves in various materials.

Part C: If rotary phones worked for my grandparents, why did they invent cell phones?

Students who understand the concepts are able to:

	to encode and transmit inforn	Interdisciplinary Connections	
NJSL	5- ELA	NJSLS- Mathematics	
Cite specific textual evidence t	o support analysis of science	Reason abstractly and quantitatively. (MS-PS4-1) MP.2	
and technical texts. (MS-PS4-3		Model with mathematics. (MS-PS4-1) MP.4	
Determine the central ideas or		Understand the concept of a ratio and use ratio language to describe a ratio relationship	
an accurate summary of the te		between two quantities. (MS-PS4-1) 6.RP.A.1	
knowledge or opinions. (MS-P	•	Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS4-1)	
Compare and contrast the info	rmation gained from	6.RP.A.3	
experiments, simulations, vide	os, or multimedia sources with	Recognize and represent proportional relationships between quantities. (MS-PS4-1) 7.RP.A.2	
that gained from reading a tex		Interpret the equation y = mx + b as defining a linear function, whose graph is a straight	
(MS-PS4-3) RST.6-8.9	·	line; give examples of functions that are not linear. (MS-PS4-1) 8.F.A.3	
Draw evidence from information	onal texts to support analysis,		
reflection, and research. (MS-F	PS4-3) WHST.6-8.9		
Integrate multimedia and visua	al displays into presentations		
to clarify information, strength	en claims and evidence, and		
add interest. (MS-PS4-1),(MS-F	PS4-2) SL.8.5		
Core Instructional Materials	Lab-Aids, Lab Materials, house Magazine, Blooket.	hold chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod, Scholastic	
		ng resource in an innovative way.	
	-	that may exist in the adoption of new ideas.	
9.4.8.CT.2 Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most		lutions to a problem and evaluate short- and long-term effects to determine the most	
plausible option.		a citations in online materials for proper use	
Career Readiness, Life	9.4.8.DC.1Analyze the resource citations in online materials for proper use. 9.4.8.IML.7 Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose.		
Literacies and Key Skills		s to produce, publish, and deliver information supported with evidence for an authentic	
······································	audience.		
9.4.8.TL.1 Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data decision-making.		heet in order to analyze multiple data sets, identify relationships, and facilitate data-based	

9.4.8.TL.2 Gather data and digitally represent information to communicate a real-world problem.

9.4.8.TL.3 Select appropriate tools to organize and present information digitally.

Computer Science and Design Thinking	8.2.8 ED.3 Develop a proposal 8,2.8.ED.7 Design a product to decisions made as a result of s 8.2.8.ITH.2 Compare how tech	for a solution to a real-world p address a real-world problem specific constraints and trade-or mologies have influenced socie ct of modifying resources in a p	and document the iterative des ffs. ty over time.	
	Special Education	Modifications At-Risk	Gifted and Talented	504
English Language Learners Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	Word walls
Word walls	Visual aides	Peer tutoring	Challenge assignments	Visual aides
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	Graphic organizers
Bilingual	Multimedia	Graphic organizers	Tiered activities	Multimedia
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	Leveled readers
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	Assistive technology
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking	Extended time
Annotation guides	Answer masking		tasks	Answer masking
Think-pair- share	Answer eliminator		Self-directed activities	Answer eliminator
Visual aides	Highlighter			Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

	L SCIENCE		
MS. Waves and Their Applications in Technologies for Information Transfer			
MS-PS4-1. Use mathematical representations to describe a simple model for	or waves that includes how the amplitu	ude of a wave is related to the energy	
in a wave.			
Clarification Statement: Emphasis is on describing waves with both qualitati	· •		
Assessment Boundary: Assessment does not include electromagnetic waves	and is limited to standard repeating wa	aves.	
Evidence Statements: MS-PS1-4			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Using Mathematics and Computational Thinking	PS4.A: Wave Properties	Patterns	
<u>Mathematical and computational thinking at the 6–8 level builds on K–5 and</u>	A simple wave has a repeating pattern	<u>Graphs and charts can be used to</u>	
progresses to identifying patterns in large data sets and using mathematical	with a specific wavelength, frequency,	identify patterns in data.	
concepts to support explanations and arguments.	and amplitude.		
Use mathematical representations to describe and/or support scientific			
conclusions and design solutions.			
Connections to Nature of Science			
Scientific Knowledge is Based on Empirical Evidence			
Science knowledge is based upon logical and conceptual connections			
between evidence and explanations.			
Connections to other DCIs in this grade-band: N/A	•		
Articulation of DCIs across grade-bands: 4.PS3.A ; 4.PS3.B ; 4.PS4.A ; HS.PS	4.A ; HS.PS4.B		
NJSLS- ELA: SL.8.5			
NJSLS- Math: MP.2, MP.4, 6.RP.A.1, 6.RP.A.3, 7.RP.A.2, 8.F.A.3			
5E N	IODEL		
<u>MS-PS4-1. Use mathematical representations to describe a simple model fo</u>	or waves that includes how the amplitu	ude of a wave is related to	
the energy in a wave.			
Types of Waves			
Engage <u>https://www.youtube.com/watch?v=v</u>	https://www.youtube.com/watch?v=w2s2fZr8sgQ		
Anticipatory Set <u>Demonstration</u>			

	Use an example of "wall ball" and the bouncing of a ball. Predict where the ball will bounce given the angle of
	incidence. Relate this to the Law of Reflection and the angle of incidence and reflection. Discuss the difference
	between regular and diffused reflection.
	Wave Behavior Labs
	In these lab activities, students will create simple mathematical representations of waves and identify characteristic
Exploration	properties of waves.
Student Inquiry	Day 1: http://betterlesson.com/lesson/633386/wave-behavior-lab-rotation-day-1
	Day 2 :http://betterlesson.com/lesson/633450/wave-behavior-lab-rotation-day-2
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts & Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS4.A: Wave Properties
	A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. (MS-PS4-1)
	Have students review the graphs they created during the lab. Ask them to predict the change in the energy of the
Flah anatian	wave if any one of the parameters of the wave is changed.
Elaboration	Wavelength: http://www.ck12.org/physical-science/Wavelength-in-Physical-Science/
Extension Activity	Wave Frequency: http://www.ck12.org/physical-science/Wave-Frequency-in-Physical-Science/
	Wave Amplitude:http://www.ck12.org/physical-science/Wave-Amplitude-in-Physical-Science/
	Assessment Task A: Graphing of Characteristics Properties of Waves
	Use mathematical representations to describe and/or support scientific conclusions and design solutions.
	http://betterlesson.com/lesson/resource/3158929/graphing-of-characteristic-properties-of-waves?from=resource
Evaluation	image
Assessment Tasks	Assessment Task B: Lab Closure Questions
	What evidence can you cite that different types of waves interact with matter in different ways?
	How can you create a mathematical representation of wave properties?

	PHYSICAL SCIENCE	
	ons in Technologies for Information Transfer nodel to describe that waves are reflected, absorbed, or transm	itted through various materials.
•	sis is on both light and mechanical waves. Examples of models co	•
descriptions.		
	nent is limited to qualitative applications pertaining to light and n	nechanical waves.
Evidence Statements: MS-PS4-2		
Science & Engineering	Disciplinary Core Ideas	Cross-Cutting Concepts
Practices Developing and Using Models	PS4.A: Wave Properties	Structure and Function
Modeling in 6–8 builds on K–5		Structures can be designed to serve particular functions
and progresses to developing,	PS4.B: Electromagnetic Radiation	by taking into account properties of different materials,
using, and revising models to	When light shines on an object, it is reflected, absorbed, or	and how materials can be shaped and used.
	transmitted through the object, depending on the object's	
	material and the frequency (color) of the light.	
systems.	The path that light travels can be traced as straight lines, except	
Develop and use a model to	at surfaces between different transparent materials (e.g., air	
describe phenomena.	and water, air and glass) where the light path bends.	
	A wave model of light is useful for explaining brightness, color,	
	and the frequency-dependent bending of light at a surface	
	between media.	
	However, because light can travel through space, it cannot be a	
	matter wave, like sound or water waves.	
Connections to other DCIs in th	is grade-band: MS.LS1.D	
•	e-bands: 4.PS4.B ; HS.PS4.A ; HS.PS4.B ; HS.ESS1.A ; HS.ESS2.A ;	; HS.ESS2.C ; HS.ESS2.D
NJSLS- ELA: SL.8.5		
NJSLS- Math: N/A		

5E MODEL

MS-PS4-2. Develo	p and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
	Provide an example of how light or sound can be reflected, absorbed or transmitted through a medium (between objects).
Engage	Find one object within the classroom that will represent light being reflected, absorbed or transmitted and bring it back to your seat
	(examples of: translucent, opaque and transparent).
	The class will create a list on the Smartboard and discuss whether their "object" reflects, absorbs or transmits light and how/why
Anticipatory Set	they choose that "object."
	Introduction to Light Video: https://www.youtube.com/watch?v=yHJ_X_IXtB8
	Indoor Rainbow: http://www.weatherwizkids.com/experiments-rainbow-indoor.htm
	http://www.bozemanscience.com/waves
	What is a medium? What types of materials can light and sound pass through? How will sound/light passing through solids, liquids or
	gasses affect the energy (waves) that are transmitted? What real-life situations/experiences can you use as examples to support your
Exploration	thinking?
Student Inquiry	Light Activity: Exploring Light: Absorb, Reflect, Transmit or Refract?
otaacht nigan y	https://www.teachengineering.org/view_activity.php?url=collection/van_/activities/van_troll/van_troll_lesson02_activity1.xml
	Sound Activity: http://www.ehow.com/info_8119201_sound-wave-experiments-kids.html
	Water Activities: https://www.ck12.org/physical-science/Mechanical-Wave-in-Physical-Science/
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS4.A: Wave Properties
Explanation	A sound wave needs a medium through which it is transmitted. (MS-PS4-2)
Concepts and	PS4.B: Electromagnetic Radiation
Practices	When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and
	the frequency (color) of the light. (MS-PS4-2)
	The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and
	water, air and glass) where the light path bends. (MS-PS4-2)
	A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between
	media. (MS-PS4-2)
	<u>However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (MS-PS4-2)</u>

Elaboration	Sunscreens and Sunburns http://www.haspi.org/uploads/6/5/2/9/65290513/06_physicalsunscreen.pdf
	Assessment Task A
Evaluation	Develop and use a model to describe phenomena.
Assessment Tasks	After completing Exploring Light Properties Investigation, students will complete the What Did You Learn Today? worksheet to
	describe that waves are reflected, absorbed, or transmitted through various materials.

	PHYSICAL SCIENCE			
MS. Waves and Their Applications	in Technologies for Information Trans	fer		
MS-PS4-3. Integrate qualitative scie	entific and technical information to su	pport the claim that digitized signals are a more reliable way to encode and		
transmit information than analog s	ignals.			
Clarification Statement: Emphasis i	s on a basic understanding that waves	can be used for communication purposes. Examples could include using fiber		
optic cable to transmit light pulses,	radio wave pulses in wifi devices, and	conversion of stored binary patterns to make sound or text on a computer		
screen.				
Assessment Boundary: Assessment	does not include binary counting. Ass	essment does not include the specific mechanism of any given device.		
Evidence Statements: MS-PS4-3				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Obtaining, Evaluating, and	PS4.C: Information Technologies and	Structure and Function		
Communicating Information	Instrumentation	Structures can be designed to serve particular functions.		
Obtaining, evaluating, and	Digitized signals (sent as wave pulses)	Connections to Engineering, Technology, and Applications of Science		
communicating information in 6-8	are a more reliable way to encode	Influence of Science, Engineering, and Technology on Society and the Natural		
builds on K-5 and progresses to	and transmit information.	World Technologies extend the measurement, exploration, modeling, and		
evaluating the merit and validity of		computational capacity of scientific investigations.		
ideas and methods.		Connections to Nature of Science		
Integrate qualitative scientific and		Science is a Human Endeavor		
technical information in written		Advances in technology influence the progress of science and science has		
text with that contained in media		influenced advances in technology.		

and visual displays	to clarify claims			
and findings.				
	her DCIs in this grade-band: N/A			
Articulation of DCI	s across grade-bands: 4.PS4.C ; HS.PS4.A ; HS.PS4.C			
NJSLS- ELA: RST.6-8	3.1, RST.6-8.2, RST.6-8.9, WHST.6-8.9			
NJSLS- Math: N/A				
	5E MODEL			
MS-PS4-3. Integrat	e qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and			
transmit information	on than analog signals.			
	Analog vs. Digital Video: http://www.diffen.com/difference/Analog_vs_Digital			
Engage	Guiding Question			
Anticipatory Set	Besides digital (computers, phones, etc.) what are other ways that you have heard/seen/read of transmitting information (mail,			
	music, video, etc.) without the use of computers?			
	http://educators.brainpop.com/bp-topic/analog-and-digital-recording/			
	Day 1:			
	Have students read the following article about analog vs. digital media and information http://www.diffen.com/difference/Analog vs Digital			
	What are examples of analog vs. digital media?			
	How has the real world transitioned from analog to digital in the last 10 years?			
	Please provide examples from your life where you were able to see and record these changes.			
Exploration	Day 2:			
Student Inquiry	Examples of Media to Explore: Music, Images, Phone/Communication, Maps/Satellites, Video Games (8 bit cartridges vs. now can			
	download to console - no disc required!), shopping (go to mall vs. online shopping).			
	Below is a list of items that students can be asked to research how it has changed/grown to be more digital as time has gone by. It is			
	important for students to realize the resources and learning potential they NOW have available to them (that once did not exist due			
	to technological constraints).			
	Clocks, Medical Devices, Telephones, Cassettes/Radio vs. Pandora/Sirius, Paper Maps vs. Google Maps/Earth, Cars			
	Day 3:			

	Digital vs. Analog Signal Project: Students will be able to explain why digital wave signals are a more reliable way of communicating
	information than analog wave signals.
	https://sciencewithmrsbowling.wordpress.com/resources/digital-vs-analog-signal-project/
	In these lessons:
Evaluation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Practices	PS4.C: Information Technologies and Instrumentation
	Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information. (MS-PS4-3)
	http://faraday.theiet.org/resources/overview/analogue-digital.cfm
	Bluetooth and WiFi: How do they work? What is actually being transmitted? How have these technologies help to make every day
Extension Activity	"activities" easier? (Communication, Satellites, NASA Probe Missions - Pluto, Fiber Optic Cables vs. Dial-Up). What's a cloud?
	Assessment Task A
Evaluation	Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify
	claims and findings.
Assessment Tasks	After completed Day 3 (Digital vs. Analog Signal Project), students will explain in written text why digital signals are better than
	analog signals.

Unit 7: Overview

Unit 7: Force and Motion

Grade: 8

Content Area: Physical Science

Pacing: 25 Instructional Days

Essential Question

How can we predict the motion of an object?

Student Learning Objectives (Performance Expectations)

MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account

relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-PS2-2. Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Unit Summary

Students use system and system models and stability and change to understanding ideas related to why some objects will keep moving and why objects fall to the ground. Students apply Newton's third law of motion to related forces to explain the motion of objects. Students also apply an engineering practice and concept to solve a problem caused when objects collide. The crosscutting concepts of system and system models and stability and change provide a framework for understanding the disciplinary core ideas. Students demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, engaging in argument from evidence, developing and using models, and constructing explanations and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Newton's Third Law of Motion, friction, force, potential energy, kinetic energy, gravity, transfer, incline/decline, balanced/unbalanced forces, net force, momentum, velocity, weight, inertia

Formative Assessment Measures

Part A: How does a sailboat work?

Students who understand the concepts are able to:

Apply Newton's third law to design a solution to a problem involving the motion of two colliding objects.

Define a design problem involving the motion of two colliding objects that can be solved through the development of an object, tool, process, or system and that includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.

Evaluate competing design solutions involving the motion of two colliding objects based on jointly developed and agreed-upon design criteria.

Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

Analyze and interpret data to determine similarities and differences in findings.

Part B: Who can build the fastest sailboat?

Students who understand the concepts are able to:

Plan an investigation individually and collaboratively to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

Design an investigation and identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how much data is needed to support a claim.

Make logical and conceptual connections between evidence and explanations.

Examine the changes over time and forces at different scales to explain the stability and change in designed systems.

Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science	Reason abstractly and quantitatively.		
and technical texts, attending to the precise details of	(MS-PS2-1),(MS-PS2-2),(MS-PS2-3),(MS-ETS1-1),(MS-ETS1-2) MP.2		
explanations or descriptions.	Understand that positive and negative numbers are used together to describe quantities		
(MS-PS2-1),(MS-ETS1-1),(MS-ETS1-2) RST.6-8.1	having opposite directions or values; use positive and negative numbers to represent		
Follow precisely a multistep procedure when carrying out	quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)		
experiments, taking measurements, or performing technical	6.NS.C.5		
tasks. (MS-PS2-1),(MS-PS2-2) RST.6-8.3	Write, read, and evaluate expressions in which letters stand for numbers.		
Gather relevant information from multiple print and digital	(MS-PS2-1),(MS-PS2-2) 6.EE.A.2		
sources, using search terms effectively; assess the credibility	Solve multi-step real-life and mathematical problems posed with positive and negative		
and accuracy of each source; and quote or paraphrase the	rational numbers in any form, using tools strategically. Apply properties of operations to		

data and conclusions of others	s while avoiding plagiarism and	calculate with numbers in any	form; convert between forms	as appropriate; and assess the	
following a standard format for citation. (MS-ETS1-1)		reasonableness of answers using mental computation and estimation strategies.			
WHST.6-8.8		(MS-PS2-1),(MS-PS2-2) 7.EE.B.3			
Draw evidence from informati	onal texts to support analysis,	Use variables to represent qua	antities in a real-world or math	ematical problem, and	
reflection, and research. (MS-I	ETS1-2) WHST.6-8.9	construct simple equations and	d inequalities to solve problem	ns by reasoning about the	
Compare and contrast the info	ormation gained from	quantities. (MS-PS2-1),(MS-PS	2-2) 7.EE.B.4		
experiments, simulations, vide	eo, or multimedia sources with	Solve multi-step real-life and n	nathematical problems posed	with positive and negative	
that gained from reading a tex	t on the same topic.	rational numbers in any form (whole numbers, fractions, and	d decimals), using tools	
(MS-ETS1-2),(MS-ETS1-3) RST.	6-8.9	strategically. Apply properties	of operations to calculate with	n numbers in any form; convert	
Conduct short research projec	ts to answer a question	between forms as appropriate	; and assess the reasonablene	ss of answers using mental	
(including a self-generated que		computation and estimation st	trategies. (MS-ETS1-1),(MS-ET	S1-2) 7.EE.3	
sources and generating addition	onal related, focused questions				
that allow for multiple avenue	s of exploration. (MS-ETS1-2)				
WHST.6-8.7					
Core Instructional Materials	Lab-Aids, Lab Materials, household chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod, Scholastic Magazine, Blooket.				
Career Readiness, Life Literacies and Key Skills	 9.4.8.Cl.3: Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2). 9.4.8.IML.12: Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic audience. 9.4.8.Cl.3: Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2). 9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data. 				
 8.2.8.ED.7: Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches). Computer Science and Design 8.2.8.ETW.2: Analyze the impact of modifying resources in a product or system (e.g., materials, energy, information, time, tools, people, capital). 					
8.2.8.ITH.4: Identify technologies that have been designed to reduce the negative consequences of other technologi			ences of other technologies		
	and explain the change in impact.				
	Special Education	Modifications At-Risk	Gifted and Talented	504	
English Language Learners Scaffolding	•	Teacher tutoring	Curriculum compacting	Word walls	
Word walls		Peer tutoring	Challenge assignments	Visual aides	
1	1		1		

Bilingual	Multimedia	Graphic organizers	Tiered activities	Multimedia
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	Leveled readers
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	Assistive technology
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking	Extended time
Annotation guides	Answer masking		tasks	Answer masking
Think-pair- share	Answer eliminator		Self-directed activities	Answer eliminator
Visual aides	Highlighter			Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.

Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.

Evidence Statements: MS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and	PS2.A: Forces and Motion	Systems and System Models
Designing Solutions	For any pair of interacting objects,	Models can be used to represent systems and their interactions—such as
Constructing explanations and	the force exerted by the first object	inputs, processes and outputs—and energy and matter flows within systems.
designing solutions in 6–8 builds	<u>on the second object is equal in</u>	Connections to Engineering, Technology, and Applications of Science
on K–5 experiences and progresses	strength to the force that the second	Influence of Science, Engineering, and Technology on Society and the Natural
to include constructing	<u>object exerts on the first, but in the</u>	World
explanations and designing	opposite direction (Newton's third	The uses of technologies and any limitations on their use are driven by
solutions supported by multiple	law).	individual or societal needs, desires, and values; by the findings of scientific
sources of evidence consistent		research; and by differences in such factors as climate, natural resources, and
		economic conditions.

with scientific idea	as, principles,				
and theories.					
Apply scientific ide					
<u>to design an objec</u>	<u>t, tool, process</u>				
<u>or system.</u>					
	her DCIs in this grade-band: MS.PS3.C				
	Is across grade-bands: 3.PS2.A ; HS.PS2.A				
NJSLS- ELA: RST.6-	-8.1, RST.6-8.3, WHST.6-8.7				
NJSLS- Math: MP.	2, 6.NS.C.5, 6.EE.A.2, 7.EE.B.3, 7.EE.B.4				
	5E Model				
MS-PS2-1. Apply I	Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.				
	Go to link and click Newton's Third Law, then video.				
	http://www.ck12.org/ngss/middle-school-physical-sciences/motion-and-stability:-forces-and-interactions				
	Outline the action and reaction demonstrated by the astronauts in the video. Why does wearing the battery pack affect the motion of				
	the astronaut named Alexander?				
	Describe an example of Newton's cradle.				
	How do space vehicles apply action and reaction forces to blast off?				
Engage	Lead class discuss:				
Anticipatory Set	- State Newton's third law of motion.				
	- Describe an example of an action and reaction. Identify the forces and their directions.				
	- Explain why action and reaction forces are not balanced forces.				
	<u>Collision Video</u>				
	https://www.youtube.com/watch?v=xtxd27jl2_g&feature=c4-overview-vl&list=PL983889014322C331				
What are the engineers testing in these crash tests? How do you think we can predict the direction of the collisions?					
	impact car collisions?				
	Newton's Third Law Lesson Plan				
Exploration	The first two activities help students to review Newton's laws and forces acting on an object. In the culminating task, students are				
Student Inquiry	asked to design, test, and redesign a moon lander and rover.				
. ,	1. Forces in Motion Activity				
	1				

	2. Describing Motion Activity		
	The final project gives students design constraints and asks them to reflect and retest their design. Teachers should plan on the		
	culminating activity as a 3-4 day project (unless students are working at home). Minimal teacher prep is required and most of the		
	materials given to students can be basic household items and things you have around the classroom.		
	<u>3. Moon Rover - Final Activity</u>		
	In these lessons:		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Practices	PS2.A: Forces and Motion		
	For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the		
	second object exerts on the first, but in the opposite direction (Newton's third law).		
Elaboration	Balloon Rockets https://sciencebob.com/make-a-balloon-rocket/		
Extension Activity			
	Assessment Task A: Moon Rover		
Evaluation	Apply scientific ideas or principles to design an object, tool, process or system.		
Assessment	Students will be able to apply Newton's 3rd Law of Motion to design a solution to landing a rover on the Moon. Use the attached		
Tasks	rubric to assess students upon completion of design project.		
	Moon Rover Engineering Design Plan Rubric		

ENGINEERING DESIGN					
MS-ETS1-1 Engineering Design	MS-ETS1-1 Engineering Design				
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account					
relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.					
Evidence Statements: MS-ETS1-1					
Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts					
Asking Questions and Defining	ETS1.A: Defining and	Influence of Science, Engineering, and Technology on Society and the Natural			
Problems	Delimiting Engineering	<u>World</u>			
	<u>Problems</u>				

Asking questions and defining	The more precisely a design	All human activity draws on natural resources and has both short and long-term	
	task's criteria and constraints	consequences, positive as well as negative, for the health of people and the	
grades K–5 experiences and		natural environment. The uses of technologies and limitations on their use are	
	it is that the designed solution	driven by individual or societal needs, desires, and values; by the findings of	
between variables, and clarifying		scientific research; and by differences in such factors as climate, natural	
	of constraints includes	resources, and economic conditions.	
Define a design problem that can be	consideration of scientific		
solved through the development of an			
	knowledge that are likely to		
includes multiple criteria and	limit possible solutions.		
constraints, including scientific			
knowledge that may limit possible			
solutions.			
Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3			
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B			
NJSLS- ELA: RST.6-8.1, WHST.6-8.8			
NJSLS- Math: MP.2, 7.EE.3			

ENGINEERING DESIGN

MS-ETS1-2 Engineering Design

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Evidence Statements: MS-ETS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions	
Engaging in argument from evidence in 6–8	There are systematic processes for	
builds on K–5 experiences and progresses to	evaluating solutions with respect to how	
constructing a convincing argument that	well they meet the criteria and constraints	
supports or refutes claims for either	of a problem.	

explanations or solutions about the natural			
and designed world.			
Evaluate competing design solutions based			
on jointly developed and agreed-upon			
design criteria.			
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5			
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B			
NJSLS ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7 , WHST.6-8.9			
NJSLS- Math: MP.2, 7.EE.3			

ENGINEERING DESIGN

MS-ETS1-3 Engineering Design

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Evidence Statements: MS-ETS1-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions	
Analyzing data in 6–8 builds on K–5	There are systematic processes for evaluating	
experiences and progresses to	solutions with respect to how well they meet the	
extending quantitative analysis to	criteria and constraints of a problem.	
investigations, distinguishing	Sometimes parts of different solutions can be	
between correlation and causation,	combined to create a solution that is better than	
and basic statistical techniques of	any of its predecessors.	
data and error analysis.	ETS1.C: Optimizing the Design Solution Although	
Analyze and interpret data to	one design may not perform the best across all	
determine similarities and	tests, identifying the characteristics of the design	
differences in findings.	that performed the best in each test can provide	
	useful information for the redesign	

process—that is, some of those characteristics

may be incorporated into the new design.

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6

Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9

NJSLS- Math: MP.2, 7.EE.3

PHYSICAL SCIENCE

MS. Motion and Stability: Forces and Interactions

MS-PS2-2. Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

Clarification Statement: Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.

Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.

Evidence Statements: MS-PS2-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying Out Investigations	PS2.A: Forces and Motion	Stability and Change
Planning and carrying out investigations to	The motion of an object is determined by	Explanations of stability and change in natural or designed
answer questions or test solutions to	the sum of the forces acting on it; if the	systems can be constructed by examining the changes over time
problems in 6–8 builds on K–5 experiences	<u>total force on the object is not zero, its</u>	and forces at different scales.
and progresses to include investigations that	motion will change. The greater the mass	
use multiple variables and provide evidence	of the object, the greater the force	
to support explanations or design solutions.	needed to achieve the same change in	
Plan an investigation individually and	<u>motion. For any given object, a larger</u>	
collaboratively, and in the design: identify	force causes a larger change in motion.	
independent and dependent variables and	All positions of objects and the directions	
controls, what tools are needed to do the	of forces and motions must be described	

asthoring how mos	wromonte will be	a an arbitrarily chosen reference from a		
gathering, how meas		n an arbitrarily chosen reference frame		
		nd arbitrarily chosen units of size. In		
support a claim.		rder to share information with other		
	nnections to Nature of Science people, these choices must also be			
-	nowledge is Based on Empirical shared.			
Evidence				
-	ce knowledge is based upon logical and			
conceptual connection	ons between evidence			
and explanations.				
Connections to othe	r DCIs in this grade-band:	: MS.PS3.A ; MS.PS3.B ; MS.ESS2.C		
Articulation of DCIs across grade-bands: 3.PS2.A ; HS.PS2.A ; HS.PS3.B ; HS.ESS1.B				
NJSLS- ELA: RST.6-8.3, WHST.6-8.7				
NJSLS- Math: MP.2,	5.EE.A.2, 7.EE.B.3, 7.EE.B.4	.4		
		5E Model		
MS-PS2-2. Plan an ir	vestigation to provide evi	idence that the change in an object's mo	otion depends on the sum of the forces on the object and the	
mass of the object.				
	Begin lesson by carrying out one of the Newton's Law Demonstrations from the following resource			
F u u u u	http://www.exo.net/~donr/activities/Newton's_Laws_Demonstrations.pdf			
Engage	Have students explore the following interactive site. This site will allow students to explore how gravity impacts the motion of			
Anticipatory Set	objects.			
	http://www.glencoe.com/sites/common_assets/science/virtual_labs/E25/E25.html			
	Marble Roll- Let's Move It			
	http://it.pinellas.k12.fl.us/Teachers3/gurianb/files/AD5483E493EE4299BDAF1BABAD473540.pdf			
	Ask groups to set up their experiment. Provide the "Science Mini-boards" to record their data and have a notebook for them to			
Exploration	record observations. During the actual experiments time, the teacher should be constantly assessing, looking for and correcting			
Student Inquiry	misconceptions. This is also where the teacher should be doing a lot of "playing dumb" and asking lots of "whys". Probing is essential			
	to encourage scientific discussions.			
	Student Procedures (See mini-board): 1. Decide on the number of books your group will use for this experiment. 2. Make your			
	what has a shout what you	u think will hannen in your experiment	B. Find the mass of the marbles. 4. Set up books and put the ruler	

	on the edge. 5. Put the carton at the base of the ruler. 6. Use a pencil to hold the marble 2 inches from the top of the ruler. 7. Release	
	the pencil so that no force is applied to the marble. 8. Measure the distance the carton was moved. 9. Repeat for a total of 10 trials.	
	10. The teacher will teach you how to use a calculator to find the average or mean. 11. Repeat procedures for the next marble.	
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Fundamentian	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
Explanation	PS2.A: Forces and Motion	
Concepts and Practices	The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will	
Practices	change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object,	
	a larger force causes a larger change in motion.	
	All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and	
	arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared.	
Elaboration	Science of NFL Football: Newton's Second Law of Motion	
Extension Activity	http://science360.gov/obj/video/58e62534-e38d-430b-bfb1-c505e628a2d4/science-nfl-football-newtons-second-law-motion	
Evaluation Assessment Tasks	Assessment Task A: Marble Roll Experiment	
	Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls,	
	what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.	
	Students will complete the Science Mini Board to provide evidence of mastery of the standard.	
	Mini Board - pages 5 & 6	

ENGINEERING DESIGN			
MS-ETS1-4 Engineering Design			
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design			
<u>can be achieved.</u>			
Evidence Statements: MS-ETS1-4			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models	ETS1.B: Developing Possible Solutions		

Modeling in 6–8 builds on K–5 experiences and	A solution needs to be tested, and then modified on			
progresses to developing, using, and revising	the basis of the test results, in order to improve it.			
models to describe, test, and predict more abstract	Models of all kinds are important for testing			
phenomena and design systems.	solutions.			
Develop a model to generate data to test ideas	ETS1.C: Optimizing the Design Solution The iterative			
about designed systems, including those	process of testing the most promising solutions and			
representing inputs and outputs.	modifying what is proposed on the basis of the test			
	results leads to greater refinement and ultimately to			
	an optimal solution.			
Connections to MS-ETS1.B: Developing Possible So	lutions Problems include: Physical Science: MS-PS1-	6, MS-PS3-3, Life Science: MS-LS2-5		
Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6				
Articulation of DCIs across grade-bands: 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C				
NJSLS- ELA: SL.8.5				
NJSLS- Math: MP.2, 7.SP				

Unit 8: Overview

Unit 8: Chemical Reactions

Grade: 8

Content Area: Physical Science

Pacing: 25 Instructional Days

Essential Question

How do substances combine or change (react) to make new substances?

Student Learning Objectives (Performance Expectations)

MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Unit Summary

Students provide molecular-level accounts of states of matters and changes between states, of how chemical reactions involve regrouping of atoms to form new substances, and of how atoms rearrange during chemical reactions. Students also apply their understanding of optimization design and process in engineering to chemical reaction systems. The crosscutting concept of energy and matter provides a framework for understanding the disciplinary core ideas. Students are expected to demonstrate proficiency in developing and using models, analyzing and interpreting data, designing solutions, and obtaining, evaluating, and communicating information. Students are also expected to use these science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Technical Terms

Thermal energy, kinetic molecular theory, conduction, convection, radiation, thermal equilibrium, kelvin, specific heat, calorimeter, thermodynamics, melting point, boiling point, Law of Conservation of Matter, reactants, products, coefficients, subscripts, chemical equations

Formative Assessment Measures

Part A: What happens to the atoms when I bake a cake?

Students who understand the concepts are able to:

Use physical models or drawings, including digital forms, to re	epresent atoms in a chemical process.		
Use mathematical descriptions to show that the number of a	toms before and after a chemical process is the same.		
Part B: How can a device be designed, constructed, tested, an	d modified that either releases or absorbs thermal energy by chemical processes?		
Students who understand the concepts are able to:			
Undertake a design project, engaging in the design cycle, to c	onstruct, test, and modify a device that either releases or absorbs thermal energy by		
chemical processes.			
Specific criteria are limited to amount, time, and temperature			
	ature of a substance in testing a device that either releases or absorbs thermal energy by		
chemical processes to determine similarities and differences	-		
	ther releases or absorbs thermal energy by chemical processes, including those representing		
inputs and outputs of thermal energy.	a designed system that either releases or absorbs thermal energy by chemical processes.		
	Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science	Reason abstractly and quantitatively. (MS-PS1-5) (MS-ETS1-3) MP.2		
	Model with mathematics. (MS-PS1-5) MP.4		
	Solve multi-step real-life and mathematical problems posed with positive and negative		
experiments, taking measurements, or performing technical	rational numbers in any form (whole numbers, fractions, and decimals), using tools		
tasks. (MS-PS1-6) RST.6-8.3	strategically. Apply properties of operations to calculate with numbers in any form; convert		
Integrate quantitative or technical information expressed in	between forms as appropriate; and assess the reasonableness of answers using mental		
words in a text with a version of that information expressed	computation and estimation strategies. (MS-ETS1-3) 7.EE.3		
visually (e.g., in a flowchart, diagram, model, graph, or			
table). (MS-PS1-5) RST.6-8.7			
ompare and contrast the information gained from			
xperiments, simulations, video, or multimedia sources with			
hat gained from reading a text on the same topic.			
MS-ETS1-3) RST.6-8.9			
Conduct short research projects to answer a question			
(including a self-generated question), drawing on several			
sources and generating additional related, focused questions			

that allow for multiple avenue	s of exploration. (MS-PS1-6)		
(MS-ETS1-3) WHST.6-8.7			
Use ratio and rate reasoning to	o solve real-world and		
mathematical problems. (MS-	PS1-5) 6.RP.A.3		
Core Instructional Materials	Lab-Aids, Lab Materials, household chemicals and materials, string, craft sticks, hot glue and glue guns, Nearpod,		
	Scholastic Magazine, Blooket.		
	9.4.8.Cl.1: Assess data gathered on varying perspectives on causes of climate change (e.g., crosscultural, gender-specific,		
	generational), and determine how the data can best be used to design multiple potential solutions (e.g., RI.7.9, 6.SP.B.5,		
	7.1.NH.IPERS.6, 8.2.8.ETW.4).		
	9.4.8.Cl.2: Repurpose an existing resource in an innovative way (e.g., 8.2.8.NT.3).		
	9.4.8.Cl.3: Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2).		
	9.4.8.Cl.4: Explore the role of creativity and innovation in career pathways and industries.		
	9.4.8.CT.1: Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or		
	global problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective		
	(e.g., MS-ETS1-2).		
	9.4.8.CT.2: Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most		
	plausible option (e.g., MS-ETS1-4, 6.1.8.CivicsDP.1).		
	9.4.8.CT.3: Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a		
	positive or negative outcome.		
	9.4.8.DC.1: Analyze the resource citations in online materials for proper use.		
	9.4.8.DC.2: Provide appropriate citation and attribution elements when creating media products (e.g., W.6.8).		
	9.4.8.DC.8: Explain how communities use data and technology to develop measures to respond to effects of climate		
	change (e.g., smart cities).		
	9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal.		
	9.4.8.IML.1: Critically curate multiple resources to assess the credibility of sources when searching for information.		
	9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations.		
	9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data.		
Career Readiness, Life	9.4.8.IML.7: Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose (e.g.,		
Literacies and Key Skills	1.2.8.C2a, 1.4.8.CR2a, 2.1.8.CHSS/IV.8.AI.1, W.5.8, 6.1.8.GeoSV.3.a, 6.1.8.CivicsDP.4.b, 7.1.NH. IPRET.8).		

	9.4.8.IML.8: Apply deliberate and thoughtful search strategies to access high-quality information on climate change (e.g.,
	1.1.8.C1b)
	9.4.8.IML.12: Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic
	audience.
	9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data-based
	decision-making
	9.4.8.TL.2: Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4,
	6.1.8.EconET.1, 6.1.8.CivicsPR.4).
	9.4.8.TL.3: Select appropriate tools to organize and present information digitally.
	9.4.8.TL.4: Synthesize and publish information about a local or global issue or event (e.g., MSLS4-5, 6.1.8.CivicsPI.3).
	9.4.8.TL.6: Collaborate to develop and publish work that provides perspectives on a real-world problem.
	8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
	8.1.8.DA.6: Analyze climate change computational models and propose refinements.
	8.2.8.ED.2: Identify the steps in the design process that could be used to solve a problem.
	8.2.8.ED.3: Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype,
	graphical/technical sketch).
	8.2.8.ED.4: Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to
	troubleshoot, evaluate, and test options to repair the product in a collaborative team.
	8.2.8.ED.5: Explain the need for optimization in a design process.
	8.2.8.ED.6: Analyze how trade-offs can impact the design of a product.
	8.2.8.ED.7: Design a product to address a real-world problem and document the iterative design process, including
	decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).
	8.2.8.ITH.2: Compare how technologies have influenced society over time.
	8.2.8.ITH.4: Identify technologies that have been designed to reduce the negative consequences of other technologies
	and explain the change in impact.
	8.2.8.ITH.5: Compare the impacts of a given technology on different societies, noting factors that may make a technology
	appropriate and sustainable in one society but not in another.
	8.2.8.NT.4: Explain how a product designed for a specific demand was modified to meet a new demand and led to a new
Thinking	product.
·······	

	8.2.8.ETW.2: Analyze the impa	act of modifying resources in a	a product or system (e.g., materia	als, energy, information, time,
	tools, people, capital).			
	8.2.8.ETW.3: Analyze the design of a product that negatively impacts the environment or society and develop possible			
	solutions to lessen its impact.			
	8.2.8.ETW.4: Compare the env	vironmental effects of two alte	ernative technologies devised to	address climate change issues
	and use data to justify which o		-	C C
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	504
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	Word walls
Word walls	Visual aides	Peer tutoring	Challenge assignments	Visual aides
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	Graphic organizers
Bilingual	Multimedia	Graphic organizers	Tiered activities	Multimedia
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	Leveled readers
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	Assistive technology
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	Notes/summaries
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking	Extended time
Annotation guides	Answer masking		tasks	Answer masking
Think-pair- share	Answer eliminator		Self-directed activities	Answer eliminator
Visual aides	Highlighter			Highlighter
Modeling	Color contrast			Color contrast
Cognates				Parent communication
				Modified assignments
				Counseling

PHYSICAL SCIENCE

MS. Matter and Its Interactions

MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms. Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.

Evidence Statements: MS-PS1-5

Science & Er	ngineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Us	sing Models	PS1.B: Chemical Reactions	Energy and Matter
Modeling in 6–8 b	<u>uilds on K–5 and</u>	Substances react chemically in	Matter is conserved because atoms are conserved in physical and
progresses to deve	eloping, using and revising	characteristic ways. In a chemical process,	chemical processes.
models to describe	e, test, and predict more	the atoms that make up the original	
abstract phenome	na and design systems.	substances are regrouped into different	
Develop a model to	o describe unobservable	molecules, and these new substances	
<u>mechanisms.</u>		have different properties from those of	
Connections to Na	ature of Science	the reactants.	
Science Models, La	aws, Mechanisms, and	The total number of each type of atom is	
Theories Explain N	Natural Phenomena	conserved, and thus the mass does not	
Laws are regulariti	es or mathematical	change.	
descriptions of nat	tural phenomena.		
Connections to ot	her DCIs in this grade-bar	nd: MS.LS1.C ; MS.LS2.B ; MS.ESS2.A	
Articulation of DC	Is across grade-bands: 5.	PS1.B ; HS.PS1.B	
NJSLS- ELA: RST.6-	8.7		
NJSLS- Math: MP.2	2, MP.4, 6.RP.A.3		
		5E Model	
MS-PS1-5. Develo	p and use a model to des	cribe how the total number of atoms does	s not change in a chemical reaction and thus mass is conserved.
	What is a Chemical Reaction: Candle Demonstration		
Engage	The teacher will use a small candle flame to demonstrate a chemical reaction between the candle wax and oxygen in the air.		
Anticipatory Set	http://www.middleschoolchemistry.com/lessonplans/chapter6/lesson1		
	(Complete numbers 1-4)		

Exploration Student Inquiry	Have students view the following video: The Law of Conservation of Mass https://www.youtube.com/watch?v=2S6e11NBwiw What is a Chemical Reaction? http://www.middleschoolchemistry.com/lessonplans/chapter6/lesson1 Students will see a molecular animation of the combustion of methane and oxygen as a model of a similar reaction. Students will use atom model cut-outs to model the reaction and see that all the atoms in the reactants show up in the products. Students will be able to explain that for a chemical reaction to take place, the bonds between atoms in the reactants are broken, the atoms rearrange, and new bonds between the atoms are formed to make the products. Students will also be able to explain that in a chemical reaction, no atoms are created or destroyed.
Explanation Concepts and Practices	In these lessons: Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. The total number of each type of atom is conserved, and thus the mass does not change.
	Have students create computer-generated models of both experiments using Google slides or another similar application in order to depict how the total number of atoms does not change in a chemical reaction. Labels should be written with details and include the following vocabulary terms: chemical and physical change, reactants, reaction, and law of conservation of mass.
Evaluation	Assessment Task A Develop a model to describe unobservable mechanisms. Students will create a model using atom model cut-outs. Teachers should assess the completion of the Student Activity Sheet.

ENGINEERING DESIGN		
MS-ETS1-4 Engineering Design		
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design		
<u>can be achieved.</u>		
Evidence Statements: MS-ETS1-4		
Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts		

Developing and Using Models	ETS1.B: Developing Possible Solutions			
Modeling in 6–8 builds on K–5 experiences and	A solution needs to be tested, and then modified on			
progresses to developing, using, and revising	the basis of the test results, in order to improve it.			
models to describe, test, and predict more abstract	Models of all kinds are important for testing			
phenomena and design systems.	<u>solutions.</u>			
Develop a model to generate data to test ideas	ETS1.C: Optimizing the Design Solution The iterative			
about designed systems, including those	process of testing the most promising solutions and			
representing inputs and outputs.	modifying what is proposed on the basis of the test			
	results leads to greater refinement and ultimately to			
	an optimal solution.			
Connections to MS-ETS1.B: Developing Possible So	olutions Problems include: Physical Science: MS-PS1-	6, MS-PS3-3, Life Science: MS-LS2-5		
Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6				
Articulation of DCIs across grade-bands: 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C				
NJSLS- ELA: SL.8.5				
NJSLS- Math: MP.2, 7.SP				

BUIN				
РНҮ	SICA	L SCI	ENCE	
		_		

MS. Matter and Its Interactions

MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.

Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device,

Evidence Statements: MS-PS1-6

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and	PS1.B: Chemical Reactions	Energy and Matter
Designing Solutions	Some chemical reactions release energy, others store	The transfer of energy can be tracked as energy flows
Constructing explanations and	energy.	through a designed or natural system.
designing solutions in 6–8 builds	ETS1.B: Developing Possible Solutions	

on K–5 experience	<u>s and</u>	A solution needs to be tested, and then modified on the		
progresses to inclu	<u>ide</u>	basis of the test results, in order to improve it. (secondary)		
constructing explai	nations and	ETS1.C: Optimizing the Design Solution		
designing solutions	<u>s supported by</u>	Although one design may not perform the best across all		
multiple sources of	<u>f evidence</u>	tests, identifying the characteristics of the design that		
consistent with scie	<u>entific</u>	performed the best in each test can provide useful		
knowledge, princip	oles, and	information for the redesign process - that is, some of the		
<u>theories.</u>		characteristics may be incorporated into the new design.		
Undertake a design	n project,	(secondary)		
engaging in the de	<u>sign cycle, to</u>	The iterative process of testing the most promising		
construct and/or in	<u>mplement a</u>	solutions and modifying what is proposed on the basis of		
solution that meet	<u>s specific</u>	the test results leads to greater refinement and ultimately		
design criteria and	constraints.	to an optimal solution. (secondary)		
Connections to oth	her DCIs in this	grade-band: MS.PS3.D		
Articulation of DCI	ls across grade	-bands: HS.PS1.A ; HS.PS1.B ; HS.PS3.A ; HS.PS3.B ; HS.PS3	B.D	
NJSLS- ELA: RST.6-8	8.3 <i>,</i> WHST.6-8.	7		
NJSLS- Math: N/A				
		5E Model		
MS-PS1-6. Underta	ake a design pı	oject to construct, test, and modify a device that either re	leases or absorbs thermal energy by chemical processes.	
	Chemical Rea	ctions and Engineering Design		
	http://www.n	niddleschoolchemistry.com/lessonplans/chapter6/lesson11		
Engage	Using the Stu	dent Activity Sheet, take students through the Design the P	roblem section of the activity.	
Anticipatory Set	In the story, the eggs need to be moved while they are protected and kept at a specific temperature range. Students observe heat			
Anticipatory Set	packs that use different chemical processes as possible heat sources for their device. As a class, students identify the features the			
	device should have to be successful (criteria) as well as the factors that might limit or impede the development of a successful design			
	(constraints).			
	Chemical Rea	ctions and Engineering Design		
Exploration	http://www.n	niddleschoolchemistry.com/lessonplans/chapter6/lesson11		
Student Inquiry				

	Students will design, test, modify, and optimize a device that uses a chemical reaction to reach a specific temperature range for a	
	portable reptile egg incubator.	
	Note: Students will not be expected to build every element of the heat pack such as incorporating a pouch of water into the pack.	
	Their main goal is to achieve the target temperature range and to design, on paper, the final device.	
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
	PS1.B: Chemical Reactions	
Evaluation	Some chemical reactions release energy, others store energy.	
Explanation	ETS1.B: Developing Possible Solutions	
Concepts and Practices	A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary)	
Practices	ETS1.C: Optimizing the Design Solution	
	Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best	
	in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into	
	the new design. (secondary)	
	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to	
	greater refinement and ultimately to an optimal solution. (secondary)	
Elaboration	Related Activities	
Extension Activity	y Better Lessons: MS-PS1-6	
	Assessment Task A	
	Students will complete the Reptile Egg Identification Chart.	
	After determining the target temperature range, students use water and different amounts of calcium chloride and baking soda to	
Evaluation	achieve the right temperature and produce enough gas to support the egg and cushion against impact.	
Assessment Tasks	<u>Assessment Task B</u>	
ASSESSITIETIL TASKS	Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria	
	and constraints.	
	Students will design, test, modify, and optimize a device that uses a chemical reaction to reach a specific temperature range for a	
	portable reptile egg incubator.	

Note: Students will not be expected to build every element of the heat pack such as incorporating a pouch of water into the pack.
Their main goal is to achieve the target temperature range and to design, on paper, the final device.

ENGINEERING DESIGN

MS-ETS1-2 Engineering Design

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Evidence Statements: MS-ETS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts				
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions					
Engaging in argument from evidence in 6–8	There are systematic processes for					
builds on K–5 experiences and progresses to	evaluating solutions with respect to how					
constructing a convincing argument that	well they meet the criteria and constraints					
supports or refutes claims for either	of a problem.					
explanations or solutions about the natural						
and designed world.						
Evaluate competing design solutions based						
on jointly developed and agreed-upon						
design criteria.						
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5						
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B						
NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7 , WHST.6-8.9						
IJSLS- Math: MP.2, 7.EE.3						

ENGINEERING DESIGN

MS-ETS1-3 Engineering Design

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of

each that can be combined into a new solution to better meet the criteria for success.

Evidence Statements: MS-ETS1-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts			
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions				
Analyzing data in 6–8 builds on K–5	There are systematic processes for evaluating solutions with				
experiences and progresses to extending	respect to how well they meet the criteria and constraints of				
quantitative analysis to investigations,	a problem.				
distinguishing between correlation and	Sometimes parts of different solutions can be combined to				
causation, and basic statistical techniques of	create a solution that is better than any of its predecessors.				
data and error analysis.	ETS1.C: Optimizing the Design Solution Although one design				
Analyze and interpret data to determine	may not perform the best across all tests, identifying the				
similarities and differences in findings.	characteristics of the design that performed the best in each				
	test can provide useful information for the redesign				
	process—that is, some of those characteristics may be				
	incorporated into the new design.				
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5					
Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6					
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C					
NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9					
NJSLS- Math: MP.2, 7.EE.3					